Інтеграл і його застосування

Математика – Алгебра Нехай – неперервна функція, невід’ємна на відрізку . Розіб’ємо відрізок на n рівних частин точками , де . Утворимо добутки , і так далі й знайдемо їх суму . Знайдемо .
.

Логарифмічні функції

Математика – Алгебра Логарифмічна функція Логарифмічні функції Функцію називають Логарифмічною функцією з основою a. Логарифмічна та показникова функції є взаємно оберненими. Властивості логарифмічної функції : Графіки показникової (рисунок 1) і логарифмічної (рисунок 2) функцій

Рівняння з двома змінними – Системи лінійних рівнянь

Математика – Алгебра Системи лінійних рівнянь Рівняння з двома змінними Лінійним рівнянням з двома невідомими Називається рівняння виду , де x і y – невідомі, a, b, і с – числа (Коефіцієнти рівняння). Розв’язком

Функції та графіки

Математика – Алгебра Функції та графіки Функція може задаватися описом, таблицею, графіком, формулою тощо. Область визначення функції зручно записувати за допомогою числових проміжків. Приклади 1) ; ; 2) ; ; 3) ; ; 4)

Знаки тригонометричних функцій

Математика – Алгебра Тригонометричні функції Знаки тригонометричних функцій З означення тригонометричних функцій легко зробити висновок щодо знаків тригонометричних функцій у координатних чвертях: Зміна тригонометричних функцій при зростанні “a” від 0 до 2п Зміну ,

Прямокутний паралелепіпед – Геометричні фігури й величини

Математика – Алгебра Геометричні фігури й величини Прямокутний паралелепіпед Прямокутний паралелепіпед (див. рисунок) має 8 вершин, 12 ребер, котрі можна розбити на 3 групи по 4 рівних, а також 6 граней (3 пари рівних

Дійсні числа

Математика – Алгебра Квадратні корені Раціональні числа – це числа, які можуть бути записані у вигляді , де m – ціле число, n – натуральне. Кожне раціональне число можна подати у вигляді нескінченного періодичного

Метод інтервалів

Математика – Алгебра Границя Метод інтервалів Отже, нехай функція неперервна на інтервалі І й перетворюється на 0 у скінченній кількості точок цього інтервалу. Тоді інтервал І розбивається цими точками на інтервали, в кожному з