Головна ⇒ 👍Формули й таблиці ⇒ Формули зниження степеня – ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ
Формули зниження степеня – ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ
Формули й таблиці
МАТЕМАТИКА
ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ
Формули зниження степеня
Для будь-якого α
Якщо , то
Якщо α ≠ kπ, то





З якою метою створюють заповідники.
Related posts:
- Формули перетворення добутків у суми – ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули й таблиці МАТЕМАТИКА ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули перетворення добутків у суми Для будь-яких α і β...
- Формули перетворення сум у добутки – ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули й таблиці МАТЕМАТИКА ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули перетворення сум у добутки Для будь-яких α і β...
- Формули подвійного і потрійного аргументу – ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули й таблиці МАТЕМАТИКА ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули подвійного і потрійного аргументу Для будь-якого α Якщо Якщо...
- Основна тригонометрична тотожність – ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули й таблиці МАТЕМАТИКА ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Основна тригонометрична тотожність Для будь-якого x...
- Основні тригонометричні тотожності – ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули й таблиці МАТЕМАТИКА ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Основні тригонометричні тотожності...
- Формули половинного аргументу – ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули й таблиці МАТЕМАТИКА ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули половинного аргументу Для будь-якого α Якщо α ≠ (2к +1)π, то Якщо α ≠ 2kπ, то Для тангенса й котангенса половинного аргументу є ще й інші формули, що не містять радикалів. Якщо α ≠ (2к +1)π, то Якщо α ≠ 2kπ, то...
- Формули додавання – ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули й таблиці МАТЕМАТИКА ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули додавання Для будь-яких α, β Для будь-яких α й β, якщо то А якщо то...
- Співвідношення між прямими й оберненими тригонометричними функціями – ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули й таблиці МАТЕМАТИКА ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Співвідношення між прямими й оберненими тригонометричними функціями...
- Співвідношення між тригонометричними функціями одного аргументу – ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули й таблиці МАТЕМАТИКА ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Співвідношення між тригонометричними функціями одного аргументу Для будь-якого Для будь-якого Для будь-якого Для будь-якого Для будь-якого...
- Основні тригонометричні рівняння – ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Формули й таблиці МАТЕМАТИКА ОСНОВНІ ФОРМУЛИ ТРИГОНОМЕТРІЇ Основні тригонометричні рівняння Sin x = 0 X = πk, k Z Cos x = 0 X = π/2 + 2πk, k Z Sin x = 1 X = π/2 + 2πk, k Z Cos x = 1 X = 2πk, k Z Sin x = -1 X […]...
- Кoрінь n-го степеня та його властивості Математика – Алгебра Степенева функція Кoрінь n-го степеня та його властивості Коренем N-го степеня з числаА називається таке число, n-й степінь якого дорівнює а. Якщо n – число непарне, то існує – і до того ж тільки один – корінь n-го степеня з довільного числа а. Цей корінь – число того ж знака, що число […]...
- Властивості степеня з цілим показником – СТЕПЕНІ, КОРЕНІ, ЛОГАРИФМИ Формули й таблиці МАТЕМАТИКА СТЕПЕНІ, КОРЕНІ, ЛОГАРИФМИ Степінь числа з натуральним показником n – добуток Позначуване аn; число а називається основою, а натуральне число n > 1 – показником степеня. Степінь числа з натуральним показником n називають n-м степенем числа а. Другий степінь числа називають квадратом цього числа. Степінь числа з нульовим показником – вираз […]...
- Властивості степеня з натуральним показником (продовження). Степінь степеня Урок № 23 Тема. Властивості степеня з натуральним показником (продовження). Степінь степеня Мета: свідоме засвоїти зміст властивостей піднесення степеня до степеня, виробляти вміння виконувати перетворення виразів із застосуванням раніше набутих знань про властивості степеня в комплексі з названою властивістю; систематизувати знання учнів про властивості степеня. Тип уроку: засвоєння знань, умінь та навичок. Хід уроку I. […]...
- ОСНОВНІ ВЛАСТИВОСТІ ЛОГАРИФМІВ Формули й таблиці МАТЕМАТИКА ОСНОВНІ ВЛАСТИВОСТІ ЛОГАРИФМІВ Для будь-якого додатного числа а, що не дорівнює 1: 1) loga1 = 0; 2) logaa = 1; 3) якщо х > 0 і у > 0, то logaху = logaх + logaу; 4) якщо х > 0 і у > 0, то logax/y = logax – logaу; 5) […]...
- Формули скороченого множення – ПРОПОРЦІЇ. ВІДСОТКИ Формули й таблиці МАТЕМАТИКА ПРОПОРЦІЇ. ВІДСОТКИ Формули скороченого множення (а + b)2 = а2 + 2аb + b2 (квадрат суми); (a – b)2 = а2 – 2ab + b2 (квадрат різниці); A2 – b2 = (a + b)(a – b) (різниця квадратів); (a + b)3 = а3 + 3а2b + 3ab2 + b3 (куб суми); […]...
- Корінь n-го степеня. Арифметичний корінь n-го степеня і його властивості УРОК 33 Тема. Корінь n – го степеня. Арифметичний корінь n – го степеня і його властивості Мета уроку. Повторити відомості про квадратний корінь. Формування понять корінь n-го степеня і арифметичний корінь n-го степеня. Вивчення властивостей коренів n-го степеня. І. Аналіз контрольної роботи з теми “Тригонометричні рівняння і нерівності” II. Повторення відомостей про квадратний корінь […]...
- Узагальнення поняття степеня УРОК 40 Тема. Узагальнення поняття степеня Мета уроку. Формування поняття степеня з раціональним показником, степінь з ірраціональним показником. І. Перевірка домашнього завдання 1. Відповіді на запитання, що виникли в учнів при розв’язуванні домашнього завдання. 2. Колективне розв’язування нерівності < 4 – х. Відповідь: 0 < х < 2. II. Повторення і систематизація знань учнів про […]...
- Множення, ділення й піднесення до степеня дробів – Раціональні вирази Математика – Алгебра Раціональні вирази Множення, ділення й піднесення до степеня дробів Щоб помножити дріб на дріб, треба перемножити окремо їхні чисельники й окремо знаменники і перший добуток записати чисельником, а другий – знаменником дробу. Щоб піднести дріб до степеня, треба піднести до цього степеня чисельник та знаменник і перший результат записати чисельником, а другий […]...
- Формули приведення – ТРИГОНОМЕТРИЧНІ ФУНКЦІЇ Формули й таблиці МАТЕМАТИКА ТРИГОНОМЕТРИЧНІ ФУНКЦІЇ Формули приведення π/2 ± α π ± α 3 π/2 ± α 2π ± α 90° ± α 180° ± α 270° ± α 360° ± α Sin β Cosα Sinα -cosα ±sinα Cos β Sinα -cosα ±sinα Cosα Tg β Tgα ctgα Tgα Tgα ctgα ±tgα Ctg β […]...
- ВЛАСТИВОСТІ СТЕПЕНЯ З НАТУРАЛЬНИМ ПОКАЗНИКОМ Цілі: – навчальна: удосконалити вміння застосовувати властивості степенів до розв’язування задач; – розвивальна: формувати вміння міркувати за аналогією; розвивати увагу, логічне мислення, пам’ять; – виховна: виховувати об’єктивність та чесність під час оцінювання власних знань, старанність, наполегливість у досягненні мети; Тип уроку : удосконалення вмінь і навичок. Обладнання та наочність: Хід уроку І. ОРГАНІЗАЦІЙНИЙ ЕТАП ______________________________________________________ […]...