Завдання 2 1. 1) Рівняння сфери, усі точки якої рівновіддалені від початку координат на 1 од. має вигляд х2 + у2 + z2= 1. 2) Оскільки центр сфери – початок координат і вона перетинає
783. 1) так; 2) ні; 3) ні. 784. 1) так; 2) ні; 3) ні. 785. у = 2x + 3. Область визначення (D(f)): будь-яке значення аргумента; Область значень (Е(f)): будь-яке значення функції. 786. у
289. 1) ABCDA1B1C1D1 – прямокутний паралелепіпед. AC = 5 см. A1C = 15 см. ΔAA1C: ∠ A = 90°. Відповідь: 2) V – ? Δ AD1CD: DC = 3, D1C = 5 → DD1
§ 2. Трикутники 11. Теореми 269. Теорема Умова Висновок 4.1 Кути АОС і СОВ – суміжні ∠AOC + ∠COB = 180° 8.2 X належить серединному перпендикуляру відрізка AB ХА = ХВ 9.1 ?ABC –
533. a2 – 144 = (a – 12)(a + 12). 534. -49 + b2 = b2 – 49 = b2 – 72 = (b – 7)(b + 7). 535. 1) а2 – 9 =
Розділ 1. Найпростіші геометричні фігури та їх властивості § 18. Найпростіші задачі па побудову 708. Щоб побудувати трикутник, що дорівнює трикутнику ABC, треба провести три кола радіусами 5 см, 6 см і 9 см.
562. Нехай дано тригранний кут, усі плоскі кути якого прямі. Лінійний кут кожного тригранного кута прямий, отже всі його двогранні кути прямі. 563. Якщо всі двогранні кути тригранного кута рівні, то кожний з них
1027. 2а+ 5b. 1028. s = 80t + 70 • 2; s = 80t + 140. Якщо t = 1,2, то s = 80 • 1,2 + 140 = 236 (км). 1029. V =
Розділ 1. Найпростіші геометричні фігури та їх властивості § 11. Рівність геометричних фігур 397. Щоб сумістити фігури F1 i F, можна скопіювати фігуру F1 на кальку, потім перевернути кальку і покласти на фігуру F.
748. Нехай дано ABDCA1B1D1C1- прямий паралелепіпед; K, L, М – середини ребер АВ, Α1Β1, В1C1. Проведемо МР? LK, KLMP – переріз паралелепіпеда площиною, яка проходить через точки K, L, М. KLMP – прямокутник. LK