Генетичний код, його основні принципи і властивості
МЕДИЧНА БІОЛОГІЯ
Розділ 1
БІОЛОГІЧНІ ОСНОВИ ЖИТТЄДІЯЛЬНОСТІ ЛЮДИНИ
1.2. Молекулярно-генетичний і клітинний рівні організації життя
1.2.3. Спадковий апарат еукаріотичних клітин і його функціонування на молекулярному рівні
1.2.3.5. Генетичний код, його основні принципи і властивості
Генетичний код ДНК. Унікальність кожної клітини полягає в унікальності її білків. Клітини, що виконують різні функції, здатні синтезувати свої власні білки, використовуючи інформацію, що записана в молекулі ДНК. Ця інформація існує у вигляді особливої
Послідовність нуклеотидів у молекулі ДНК кодує певну послідовність нуклеотидів в іРНК. Кожний триплет нуклеотидів кодує одну конкретну амінокислоту. Внаслідок трансляції, на основі генетичного коду на рибосомах синтезується необхідний білок.
Чотири азотистих основи в комбінаціях по 3, тобто 43, можуть утворити 64 різних кодони. У молекулі ДНК кожна основа входить до складу лише одного кодону. Тому код ДНК не перекривається. Кодони розташовуються один за одним безперервно. Оскільки можливих варіантів кодонів 64, амінокислот – 20, то певні амінокислоти можуть кодуватися різними триплетами (кодонами-синонімами). Внаслідок цього генетичний код називають виродженим або надмірним. Дублюючі триплети відрізняються лише за третім нуклеотидом. Є декілька амінокислот, які кодуються 3-4 різними кодонами (наприклад, амінокислота аланін кодується триплетами ЦГА, ЦГГ, ЦГТ, ГЦГ). Поряд з ними є амінокислоти, які кодуються двома триплетами, і тільки дві амінокислоти – одним. Однак кожний триплет кодує тільки одну певну амінокислоту, що свідчить про його специфічність. Крім того, деякі триплети (АТТ, АЦТ, АТЦ) не кодують амінокислоти, а є своєрідними “точками” термінації процесу зчитування інформації. Якщо процес синтезу доходить до такої “точки” в молекулі ДНК, синтез даної РНК припиняється. Встановлено кодони для всіх 20 амінокислот. Послідовність триплетів у ДНК визначає порядок розташування амінокислот у молекулі білка, тобто має місце колінеарність. Це означає, що положення кожної амінокислоти в поліпептидному ланцюгу залежить від положення триплету в ДНК. Численними дослідженнями встановлена універсальність генетичного коду. Він однаковий для всіх живих організмів, від бактерій до рослин і ссавців. Тобто у всіх живих організмів той самий триплет кодує ту ж амінокислоту. Це один з найбільш переконливих доказів спільності походження живої природи.
Таким чином, генетичний код ДНК має такі фундаментальні характеристики: 1) триплетність (три сусідні азотисті основи називаються кодоном і кодують одну амінокислоту); 2) специфічність (кожний окремий триплет кодує тільки одну певну амінокислоту); 3) неперекривність (жодна азотиста основа одного кодону ніколи не входить до складу іншого кодону); 4) відсутність розділових знаків (генетичний код не має “пунктуаційних позначок” між кодуючими триплетами у структурних генах); 5) універсальність (даний код он у ДНК або іРНК визначає ту саму амінокислоту в білкових системах всіх організмів від бактерій до людини); 6) надмірність (одна амінокислота часто має більш ніж один кодовий триплет); 7) колінеарність (ДНК є лінійним полінуклеотидним ланцюгом, а білок – лінійним поліпептидним. Послідовність амінокислот у білку відповідає послідовності триплетів у його гені. Тому ген і поліпептид, який він кодує, називають колінеарними); 8) відповідність гени – поліпептиди (клітина може мати стільки поліпептидів, скільки має генів).
Генетичний код іРНК. При транскрипції закодована інформація з матричного ланцюга ДНК переписується на комплементарну молекулу ДНК. При цьому генетичний код ДНК перекладається в генетичний код іРНК. Код іРНК комплементарний коду ДНК. Наприклад, якщо в матричному ланцюгу ДНК розташовані ААГЦТАТГЦЦААА, то в молекулі іРНК знаходиться УУЦГАУАЦГГУУУ. Таким чином, ті ж самі амінокислоти кодуються на молекулі іРНК комплементарними триплетами (табл. 1.10). Характеристики коду ІРНК такі ж, як і для ДНК. Крім цього, іРНК має старт-кодон АУЦ, який вмикає початок синтезу, а стоп-кодони УАА, УАГ, УГА зупиняють процес трансляції.
Таблиця 1.10. Генетичний код ІРНК
Положення азотистої основи в кодоні | |||||||||
1-е | 2-е | 3-є | |||||||
У | Ц | А | Г | ||||||
У | УУУ | Фен | УЦУ | Сер | УАУ | Тир | УГУ | Цис | У |
УУЦ | УЦЦ | УАЦ | УГЦ | Ц | |||||
УУА | Лей | УЦА | УАА | “Стоп” | ЦГА | “Стоп” | А | ||
УУГ | УЦГ | УАГ | УГГ | Тре | Г | ||||
Ц | ЦУУ | Лей | ЦЦУ | Про | ЦАУ | Гіс | ЦГУ | Арг | У |
ЦУЦ | ЦЦЦ | ЦАЦ | Цгц | Ц | |||||
ЦУА | ЦЦА | ЦАА | Глі | ЦГА | А | ||||
ЦУГ | ЦЦГ | ЦАГ | ЦГГ | Г | |||||
А | АУУ | Ідей | АЦУ | Тре | ААУ | Асп | АГУ | Сер | У |
АУЦ | АЦЦ | ААЦ | АГЦ | Ц | |||||
АУА | АЦА | ААА | Ліз | АГА | Арг | А | |||
АУГ | Мет; Початок” | АЦГ | ААГ | АГГ | Г | ||||
Г | ГУУ | Вал | ГЦУ | Ала | ГАУ | Асп | ГГУ | Глі | У |
ГУЦ | ГЦЦ | ГАЦ | ГЩ | Ц | |||||
ГУА | ГЦА | ГАА | Глу | ГГА | А | ||||
ГУГ | ГЦГ | ГАГ | ГГГ | Г |
Процес зчитування інформації відбувається в одному напрямку. Так, якщо в молекулі ІРНК азотисті основи будуть розташовуватися в такому порядку: AAA ЦЦЦ УГУ УЦУ.., це означає, що послідовно закодовані такі амінокислоти: лізин, пролін, цистеїн, серин. Саме в цій послідовності вони повинні знаходитися в поліпептидному ланцюгу при синтезі білка. Якщо в першому триплеті ІРНК буде втрачений один аденін, то порядок основ набуде такого вигляду: АА ЦЦЦ УГУ УЦУ… В результаті склад всіх триплетів зміниться. Перший триплет стане не AAA, а ААЦ. Подібний триплет кодує аспарагінову амінокислоту, а не лізин, як раніше. Другий триплет стане вже не ЦЦЦ, а ЦЦУ і т. д. Те ж відбувається при вставці нових основ. Таким чином, зникнення або вставка лише однієї основи може порушити синтез певної молекули білка.