СИСТЕМИ СХРЕЩУВАНЬ ОРГАНІЗМІВ ТА ЇХНІ ГЕНЕТИЧНІ НАСЛІДКИ

РОЗДІЛ 2. СПАДКОВІСТЬ І МІНЛИВІСТЬ ОРГАНІЗМІВ. ОСНОВИ СЕЛЕКЦІЇ

§19. СИСТЕМИ СХРЕЩУВАНЬ ОРГАНІЗМІВ ТА ЇХНІ ГЕНЕТИЧНІ НАСЛІДКИ

Що таке летальні та сублетальні алелі, гібриди, гомозигота і гетерозигота? В чому полягає явище розщеплення?

Ефективність селекції залежить не лише від форми штучного добору, але й від правильного вибору батьківських пар плідників і застосування тієї чи іншої системи схрещування організмів – гібридизації. Гібридизація – це процес одержання нащадків унаслідок поєднання генетичного матеріалу різних

клітин або організмів. Гібриди утворюються в результаті статевого розмноження або поєднання нестатевих клітин. В останньому випадку ядра таких гібридних клітин можуть зливатися або ж залишаються відокремленими (мал. 80).

Які існують системи гібридизації організмів? Гібридизація можлива як у межах одного виду (внутрішньовидова), так і між особинами різних видів і навіть родів (міжвидова, або віддалена). У свою чергу, внутрішньовидове схрещування буває спорідненим і неспорідненим.

Споріднене схрещування – це гібридизація організмів, які мають безпосередніх спільних предків. Залежно від ступеня генетичної

спорідненості таке схрещування може бути більш або менш тісним. Найтісніші форми спорідненого схрещування спосте рігають серед самозапильних рослин і гермафродитних тварин, яким притаманне самозапліднення. В організмів із перехресним заплідненням найтісніші форми спорідненого схрещування спостерігають у разі парування братів із сестрами, батьків з їхніми нащадками.

СИСТЕМИ СХРЕЩУВАНЬ ОРГАНІЗМІВ ТА ЇХНІ ГЕНЕТИЧНІ НАСЛІДКИ

Типи гібридизації, які застосовують у селекції

СИСТЕМИ СХРЕЩУВАНЬ ОРГАНІЗМІВ ТА ЇХНІ ГЕНЕТИЧНІ НАСЛІДКИ

Мал. 80. Схема утворення гібридної клітини:

1 – батьківські клітини; 2 – утворення двоядерної клітини;

3 – злиття ядер гібридної клітини

Унаслідок спорідненого схрещування з кожним наступним поколінням гібридів підвищується їхня гомозиготність. Це пояснюється тим, що чим більша генетична подібність батьківських форм, тим вища ймовірність поєднання в генотипі нащадків одних і тих самих алелей різних генів. У самозапильних рослин уже в 10-му поколінні спостерігають майже повну гомозиготність (до 99,9%), а при схрещуванні братів із сестрами або батьків з нащадками такий самий результат може бути досягнений після 20-го покоління. Проте 100%-ної гомозиготності за всіма генами досягти не вдається, оскільки вона порушується мутаціями, що виникають.

Споріднене схрещування може призводити до негативних наслідків: ослаблення або навіть виродження нащадків (мал. 81). Це пояснюється підвищенням ймовірності переходу в гомозиготний стан рецесивних летальних або сублетальних алелей, які можуть проявитися у фенотипі. Таким чином, тісне споріднене схрещування часто призводить до появи нащадків з різними спадковими вадами.

СИСТЕМИ СХРЕЩУВАНЬ ОРГАНІЗМІВ ТА ЇХНІ ГЕНЕТИЧНІ НАСЛІДКИ

Мал. 81. Виродження кукурудзи внаслідок спорідненого схрещування

СИСТЕМИ СХРЕЩУВАНЬ ОРГАНІЗМІВ ТА ЇХНІ ГЕНЕТИЧНІ НАСЛІДКИ

Мал. 82. Явище гетерозису у ротиків:

1 – чиста лінія з нормальними листками;

2 – чиста лінія 3 вузькими листками: З – гетерозисний гібрид

Наслідки спорідненого схрещування відомі людині з давніх – давен. Наприклад, приблизно 20% людей-альбіносів є нащадками від споріднених шлюбів. Загалом у людини відомо кілька рецесивних летальних алелей, здатних у гомозиготному стані спричинити смерть. Тому шлюби між близькими родичами у багатьох народів вважалися небажаними або взагалі заборонялися релігією чи законами.

У селекції споріднене схрещування застосовують для одержання чистих ліній. Воно дає можливість перевести в гомозиготний стан алелі, які визначають цінні для селекціонерів стани ознак.

Неспоріднене схрещування – це гібридизація організмів, які не мають тісних споріднених зв’язків, тобто представників різних ліній, сортів чи порід одного виду. Неспорідненими вважають особин, у яких не було спільних предків щонайменше протягом останніх шести поколінь. Неспоріднене схрещування застосовують для поєднання в генотипі нащадків генів, які зумовлюють цінні якості, властиві представникам різних ліній, порід або сортів. За своїми генетичними наслідками неспоріднене схрещування прямо протилежне спорідненому. При неспорідненому схрещуванні з кожним наступним поколінням зростає гетерозиготність нащадків. Адже зі зменшенням ступеня спорідненості організмів зростає ймовірність наявності в них різних алелей певних генів.

У нащадків від несгюрідненого схрещування часто спостерігають явище гетерозису, або гібридної сили (мал. 82).

Гетерозис (від грец. гетероіозіс – зміна, перевтілення) – явище, за якого перше покоління гібридів, одержаних від неспорідненого схрещування має підвищену життєздатність і продуктивність порівняно з вихідними батьківськими формами. У гетерозисних форм сублетальні та летальні рецесивні алелі переходять у гетерозиготний стан, завдяки чому їхній несприятливий вплив не проявляється у фенотипі. До того ж, у генотипі гібридних особин можуть поєднуватися сприятливі домінантні алелі обох батьків. Це, у свою чергу, може зумовлювати взаємодію домінантних алелей неалельних генів.

Найчіткіше гетерозис проявляється в першому поколінні гібридів. У наступних поколіннях, завдяки явищу розщеплення ознак і переходу частини генів у гомозиготний стан, ефект гетерозису слабшає і до восьмого покоління сходить нанівець. У рослин ефект гетерозису можна закріпити вегетативним розмноженням, подвоєнням кількості хромосом або партерногенетичним розмноженням. Гетерозис може більше позначитись на одних ознаках гібридної особини, не зачіпаючи інших.

СИСТЕМИ СХРЕЩУВАНЬ ОРГАНІЗМІВ ТА ЇХНІ ГЕНЕТИЧНІ НАСЛІДКИ

Мал. 83. Подолання безпліддя міжвидового капустяно-редькового гібрида: диплоідні редька (1) та капуста (2); тетраплоідний (3) та диплоідний (4) капустяно-редькові гібриди

Явище гетерозису широко застосовують у сільському господарстві, оскільки воно значно підвищує продуктивність (наприклад, у кукурудзи – до 20-25%). Ефект гетерозису добре виражений у овочевих культур (цибулі ріпчастої, помідорів, огірків, баклажанів, цукрового буряка тощо). У тваринництві схрещування представників різних порід прискорює ріст і статеве дозрівання, поліпшує якість м’яса, молока тощо.

Так, унаслідок схрещування представників різних несучих порід курей (наприклад, леггорнів з австралорнами) продуктивність гібридів зростає на 20-25 яєць на рік. У бройлерів (гібридні курчата м’ясних порід) гетерозис прискорює ріст і поліпшує якість м’яса (мал. 97).

Перспективним методом селекційної роботи є віддалена гібридизація – схрещування особин, які належать до різних видів і навіть родів з метою поєднання у генотипі гібридних нащадків цінних спадкових ознак представників різних видів. За допомогою віддаленої гібридизації створено гібриди пшениці й пирію, які відрізняються високою продуктивністю (до 300-450 ц зеленої маси з 1 га) і стійкістю до полягання; пшениці й жита тощо. Відомі міжвидові гібриди й серед плодово-ягідних культур (наприклад, малини та ожини, сливи та терену).

У тваринництві також виведено численні міжвидові гібриди. Так, добре відомий гібрид кобили і віслюка – мул. який відрізняється значною силою, витривалістю та довшим терміном життя порівняно з батьківськими видами. Подібні властивості виявляє гібрид одногорбого і двогорбого верблюдів. Гібрид білуги і стерляді (бістер) швидко росте і має високі смакові властивості м’яса.

Проте селекціонери часто стикаються з проблемою безпліддя міжвидових гібридів, гамети яких зазвичай не дозрівають. Навіть за умови однакової кількості хромосом у каріотипах батьківських форм, їхні хромосоми можуть відрізнятися за розмірами й особливостями будови і тому нездатні кон’югувати в процесі мейозу. Особливо ускладнюється хід мейозу за умови різної кількості хромосом у каріотипі батьківських форм.

Як можна подолати безпліддя міжвидових гібридів? Вперше методику подолання безпліддя міжвидових гібридів у рослин розробив 1924 року Георгій Дмитрович Карпеченко на прикладі гібрида капусти і редьки. Цей гібрид за своїм фенотипом займав проміжне положення між відповідними фенотипами батьківських форм (мал. 83). Хоча капуста і редька – представники різних родів родини Капустяні, кількість хромосом у них однакова (2n=18). Незважаючи на це, створений Г. Д. Карпеченком гібрид виявився безплідним, оскільки в ході мейозу “капустяні” і “редькові” хромосоми між собою не кон’югували. Тоді вчений подвоїв кількість хромосом гібрида (4n=36). У ядрах нестатевих клітин гібридів було тепер по два повних набори хромосом батьківських видів. Унаслідок цього процес мейозу в такої поліплоїдної форми відбувався нормально: “капустяні” хромосоми кожної пари кон’югували з “капустяними”, а “редькові” – з “редьковими”. У кожну з гамет завжди потрапляло по одному гаплоїдному набору хромосом як редьки, так і капусти.

СИСТЕМИ СХРЕЩУВАНЬ ОРГАНІЗМІВ ТА ЇХНІ ГЕНЕТИЧНІ НАСЛІДКИ

Мал. 84. Як

СИСТЕМИ СХРЕЩУВАНЬ ОРГАНІЗМІВ ТА ЇХНІ ГЕНЕТИЧНІ НАСЛІДКИ

Якщо в селекції рослин безпліддя міжвидових гібридів ще можна подолати, то в селекції тварин розв’язати цю проблему значно складніше. Лише в окремих випадках у міжвидових гібридів тварин особини однієї чи обох статей виявляються плідними. Так, у гібрида яка (свійська тварина високогірських районів Центральної Азії; мал. 84) і великої рогатої худоби самці безплідні, а самки плідні. Мули взагалі нездатні до розмноження.


1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (1 votes, average: 5.00 out of 5)
Loading...


Ви зараз читаєте: СИСТЕМИ СХРЕЩУВАНЬ ОРГАНІЗМІВ ТА ЇХНІ ГЕНЕТИЧНІ НАСЛІДКИ