Ознаки рівності трикутників
Геометрія
Основні властивості найпростіших геометричних фігур
Ознаки рівності трикутників
Теорема 1 (перша ознака рівності трикутників – за двома сторонами й кутом між ними).
Якщо дві сторони й кут між ними одного трикутника дорівнюють відповідно двом сторонам і куту між ними другого трикутника, то такі трикутники рівні.
Теорема 2 (друга ознака рівності трикутників – за стороною й прилеглими до неї кутами).
Якщо сторона й прилеглі до неї кути одного трикутника дорівнюють відповідно стороні й прилеглим до неї кутам другого трикутника, то такі трикутники рівні.
Теорема 3 (третя ознака рівності трикутників – за трьома сторонами).
Якщо три сторони одного трикутника дорівнюють відповідно трьом сторонам другого трикутника, то такі трикутники рівні.
Related posts:
- Перша та друга ознаки рівності трикутників Розділ 3. Трикутники. Ознаки рівності трикутників § 13. Перша та друга ознаки рівності трикутників 301. На рис. 227 трикутники рівні за першою ознакою (за двома сторонами і кутом між ними). На рис. 228 трикутники рівні за другою ознакою (за стороною і прилеглими двома кутами). 302. У? ABC і? CDA спільний елемент – сторона AВ. У? […]...
- ОЗНАКИ РІВНОСТІ ТРИКУТНИКІВ РОЗДІЛ 3 ТРИКУТНИКИ & 12. ОЗНАКИ РІВНОСТІ ТРИКУТНИКІВ Якщо трикутники ABC і А1В1С1 дорівнюють один одному, то їх можна сумістити. При цьому якщо сумістяться вершини А і А1, В і В1, С і C1, то сумістяться й сторони: АВ з A1B1, ВС з В1С1, СА з C1A1 і кути: ∠A з ∠A1∠B з∠B1, ∠C, ∠C1. […]...
- ТРЕТЯ ОЗНАКА РІВНОСТІ ТРИКУТНИКІВ РОЗДІЛ 3 ТРИКУТНИКИ & 14. ТРЕТЯ ОЗНАКА РІВНОСТІ ТРИКУТНИКІВ Вам уже відомі дві ознаки рівності трикутників. Знаючи властивості рівнобедреного трикутника, можна довести ще одну ознаку. Теорема 18 (третя ознака рівності трикутників). Якщо три сторони одного трикутника дорівнюють відповідно трьом сторонам іншого трикутника, то такі трикутники – рівні. Доведення. Нехай у трикутниках ABC і А1В1С1 АВ […]...
- Прямокутні трикутники. Властивості та ознаки рівності прямокутних трикутників Розділ 3. Трикутники. Ознаки рівності трикутників § 19. Прямокутні трикутники. Властивості та ознаки рівності прямокутних трикутників 466. 1) PF – гіпотенуза, PL і LF – катети. 2) PF довша за PL, PF довша за LF, оскільки PF – гіпотенуза. 467. На рис. 321 трикутники рівні за двома катетами. Оскільки АС = ML, СВ = LP, […]...
- Третя ознака рівності трикутників Урок № 26 Тема. Третя ознака рівності трикутників Мета: домогтися розуміння учнями змісту третьої ознаки рівності трикутників та ідеї її доведення; формувати первинні вміння застосовувати третю ознаку рівності трикутників для розв’язування задач. Тип уроку: засвоєння знань. Наочність і обладнання: набір демонстраційного креслярського приладдя; таблиця “Ознаки рівності трикутників” (див. урок № 17). ХІД УРОКУ I. Організаційний […]...
- Прямокутний трикутник Геометрія Основні властивості найпростіших геометричних фігур Прямокутний трикутник Трикутник називається Прямокутним, якщо він має прямий кут. Сторона, яка лежить проти прямого кута, називається Гіпотенузою. Сторони, що утворюють прямий кут, називаються Катетами. На рисунку – прямокутний. AB і BC – катети, AC – гіпотенуза. Теорема. Сума гострих кутів прямокутного трикутника дорівнює . Ознаки рівності прямокутних трикутників […]...
- Перша ознака рівності трикутників Урок № 18 Тема. Перша ознака рівності трикутників Мета: закріпити знання учнями формулювання першої ознаки Рівності трикутників та алгоритму її застосування; формувати навички застосування теореми для розв’язування задач. Тип уроку: засвоєння вмінь та навичок. Наочність і обладнання: набір демонстраційного креслярського приладдя; таблиця “Ознаки рівності трикутників”. ХІД УРОКУ I. Організаційний момент II. Перевірка домашнього завдання Математичний […]...
- Ознаки рівності прямокутних трикутників Розділ 1. Найпростіші геометричні фігури та їх властивості § 14. Ознаки рівності прямокутних трикутників 549. Ні, трикутники не рівні. 550. Мал. 319. ?САВ = ?HDQ (за катетом і гострим кутом: CA = HD, ∠C = ∠H). Мал. 320. ?ABC = ?CDA (за гіпотенузою АС і гострим кутом: ∠BAC = ∠DAC). Мал. 321. ?АОВ = ?DCО […]...
- Властивості подібних фігур Геометрія Подібність фігур Властивості подібних фігур Теорема. Коли фігура подібна фігурі , а фігура – фігурі , то фігури і Подібні. Із властивостей перетворення подібності випливає, що у подібних фігур відповідні кути рівні, а відповідні відрізки пропорційні. Наприклад, у подібних трикутниках ABC і : ; ; ; . Ознаки подібності трикутників Теорема 1. Якщо два […]...
- Теореми про рівність і подібність трикутників – ТРИКУТНИКИ Формули й таблиці МАТЕМАТИКА ТРИКУТНИКИ Трикутник – де багатокутник із трьома сторонами. Сторони трикутника позначаються малими буквами, що відповідають позначенню протилежних вершин. Якщо всі три кути гострі – трикутник гострокутний. Якщо один з кутів прямий – прямокутний; сторони, що утворюють прямий кут, називаються катетами (а і b), сторона проти прямого кута – гіпотенузою (с). Якщо […]...
- Друга ознака рівності трикутника Урок № 20 Тема. Друга ознака рівності трикутника Мета: домогтися розуміння учнями другої ознаки рівності трикутників та поняття “сторона і прилеглі до неї кути трикутника”. Сформувати в учнів первинні уміння: – знаходити на готових рисунках та в трикутниках, заданих назвою своїх вершин, відповідні сторони і прилеглі до неї кути; – робити висновки щодо рівності трикутників […]...
- Подібність трикутників за двома сторонами та кутом між ними Урок № 29 Тема. Подібність трикутників за двома сторонами та кутом між ними Мета: домогтися розуміння учнями змісту другої ознаки подібності трикутників та плану її доведення. Формувати вміння: – відтворювати зміст вивченої ознаки; – виділяти в трикутниках елементи для визначення їх подібності за двома сторонами та кутом між ними; – застосовувати формулювання другої ознаки подібності […]...
- Означення подібних трикутників Урок № 26 Тема. Означення подібних трикутників Мета: сформувати в учнів уявлення про подібні трикутники; працювати над засвоєнням учнями означення подібних трикутників, змісту поняття коефіцієнта подібності. Сформувати вміння: – відтворювати зміст вивчених тверджень; – виконувати записи цих тверджень математичною мовою за допомогою символу ” ~ “; – використовувати виконані записи для обчислення невідомих елементів подібних […]...
- Теореми § 2. Трикутники 11. Теореми 269. Теорема Умова Висновок 4.1 Кути АОС і СОВ – суміжні ∠AOC + ∠COB = 180° 8.2 X належить серединному перпендикуляру відрізка AB ХА = ХВ 9.1 ?ABC – рівнобедрений з основою АС 1) ∠A = ∠C; 2) бісектриса кута В є медіаною і висотою 10.3 Два кути трикутника ABC […]...
- Ознаки подібності прямокутних трикутників. Пропорційні відрізки в прямокутному трикутнику Урок № 32 Тема. Ознаки подібності прямокутних трикутників. Пропорційні відрізки в прямокутному трикутнику Мета: сформулювати ознаку подібності прямокутних трикутників за гострим кутом, на основі якої довести метричні співвідношення в прямокутному трикутнику. Домогтися засвоєння учнями змісту ознаки подібності прямокутних трикутників і метричних співвідношень у прямокутному трикутнику га їх доведення. Сформувати первинні вміння відтворювати вивчені твердження, записувати […]...
- Відношення площ подібних трикутників Урок № 50 Тема. Відношення площ подібних трикутників Мета: домогтися засвоєння учнями змісту та ідеї доведення теореми про відношення площ подібних трикутників. Сформувати вміння відтворювати зміст теореми та застосовувати її під час розв’язування задач. Тип уроку: засвоєння вмінь та навичок. Наочність та обладнання: конспект “Відношення площ подібних трикутників”. Хід уроку І. Організаційний етап II. Перевірка […]...
- Ознаки рівнобедреного трикутника Геометрія Основні властивості найпростіших геометричних фігур Ознаки рівнобедреного трикутника Теорема 1. Якщо в трикутнику два кути рівні, то він рівнобедрений. Теорема 2. Трикутник рівнобедрений, якщо: – одна з його висот є медіаною; – одна з його медіан є бісектрисою; – одна з його висот є бісектрисою. Теорема 3. Трикутник рівнобедрений, якщо: – дві його висоти […]...
- Подібність трикутників за двома кутами Урок № 28 Тема. Подібність трикутників за двома кутами Мета: домогтися розуміння учнями змісту першої ознаки подібності трикутників та наслідку з неї, плану їх доведення. Формувати вміння: – відтворювати зміст вивченої ознаки та наслідку з неї; – виділяти у трикутниках елементи для визначення їх подібності за двома кутами; – застосовувати формулювання першої ознаки подібності трикутників […]...
- Теорема Піфагора Геометрія Трикутники Теорема Піфагора Теорема 1 (Піфагора). У прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів катетів. Правильною є і теорема, обернена до теореми Піфагора. Теорема 2 (обернена). Коли в трикутнику сторони a, b, c і , то цей трикутник є прямокутним з гіпотенузою c. Теорема 3. У прямокутному трикутнику будь-який із катетів менший за гіпотенузу. […]...
- Подібність трикутників за трьома сторонами Урок № 30 Тема. Подібність трикутників за трьома сторонами Мета: домогтися розуміння учнями змісту ознаки подібності трикутників за трьома сторонами, плану їх доведення. Формувати вміння: – відтворювати зміст вивченої ознаки; – виділяти в трикутниках елементи для визначення їх подібності за трьома сторонами; – застосовувати формулювання третьої ознаки подібності трикутників для розв’язування задач. Тип уроку: засвоєння […]...
- Друга ознака рівності трикутника та її застосування Урок № 21 Тема. Друга ознака рівності трикутників та її застосування Мета: домогтися від учнів свідомого розуміння синтетичної схеми міркувань як одного з основних способів пошуку розв’язання геометричної (і не тільки) задачі; формувати вміння, використовуючи другу та першу ознаки рівності трикутників, застосовувати синтетичний спосіб розв’язування задач на доведення рівності трикутників та задач, що передбачають знаходження […]...
- Рівні трикутники. Висота, медіана, бісектриса трикутника § 2. Трикутники 6. Рівні трикутники. Висота, медіана, бісектриса трикутника Практичні завдання 132. 133. ВН – спільна висота трикутників ABD, ABC, BDC. ВН лежить поза трикутником BCD. 134. 135. 136. Вправи 137. 1) ME; 2) ∠E; 3) MK i KE; 4) ∠K i ∠E. 138. 1) ∠E; 2) ∠C i ∠E;3) CF; 4) CF і […]...
- Многокутник та його периметр. Трикутник. Види трикутників Розділ 1 НАТУРАЛЬНІ ЧИСЛА І ДІЇ З НИМИ. ГЕОМЕТРИЧНІ ФІГУРИ І ВЕЛИЧИНИ § 21. Многокутник та його периметр. Трикутник. Види трикутників Якщо кінець ламаної збігається з її початком, то таку ламану називають замкненою. На малюнку 137 зображено замкнену ламану, що складається з п’яти ланок, причому ланки ламаної не перетинаються. Таку ламану називають многокутником. Зауважимо, що […]...
- Формули косокутних трикутників 10. Додатки 36. Формули косокутних трикутників Теорема синусів: Теорема косинусів: Теорема тангенсів:...
- РІВНОБЕДРЕНИЙ ТРИКУТНИК РОЗДІЛ 3 ТРИКУТНИКИ & 13. РІВНОБЕДРЕНИЙ ТРИКУТНИК Трикутник називають рівнобедреним, якщо в нього дві сторони рівні. Рівні сторони рівнобедреного трикутника навивають бічними сторонами, а третю його сторону – основою. Трикутник, який не є рівнобедреним, називають різностороннім. Трикутник, у якого всі сторони рівні, називають рівностороннім. Рівносторонній трикутник є окремим видом рівнобедреного трикутника (мал. 166). Рівнобедрений трикутник […]...
- Ознаки рівнобедреного трикутника § 2. Трикутники 9. Ознаки рівнобедреного трикутника 232. ?ABC – рівнобедрений, тому ВК є бісектрисою кута ABC, отже, ∠ABC = 2 х ∠ABK = 2 x 25° = 50°. Відповідь: 50°. 233. BK є висотою та медіаною, тому? ABC – рівнобедрений, AB = ВС, отже, ∠C = ∠A =17°. Відповідь: 17°. 234. AС = ВС, […]...
- Основні задачі на розв’язування трикутників УРОК № 10 Тема. Основні задачі на розв’язування трикутників Мета уроку: ознайомити учнів з основними задачами розв’язування трикутників. Тип уроку: комбінований. Наочність і обладнання: таблиця “Співвідношення між сторонами і кутами трикутника” [13]. Вимоги до рівня підготовки учнів: описують основні випадки розв’язування трикутників та алгоритми їх розв’язування. Хід уроку І. Перевірка домашнього завдання Фронтальне опитування 1) […]...
- Застосування розв’язування трикутників у прикладних задачах УРОК № 11 Тема. Застосування розв’язування трикутників у прикладних задачах Мета уроку: формування вмінь учнів застосовувати знання розв’язування трикутників до розв’язування прикладних задач. Тип уроку: комбінований. Наочність і обладнання: таблиця “Співвідношення між сторонами і кутами трикутника” [13], таблиця 2, посібник [14]. Вимоги до рівня підготовки учнів: розв’язують трикутники. Застосовують алгоритми розв’язування трикутників до розв’язування прикладних […]...
- Рівнобедрений трикутник і його властивості § 2. Трикутники 8. Рівнобедрений трикутник і його властивості Практичні завдання 196. 197. 198. Вправи 199. 1) Р = 13 + 2 х 8 = 29(см). Відповідь: 29 см. 2) Нехай х см – бічна сторона, тоді 15 + 2х = 39, тоді 2х = 39 – 15; 2х = 24; х = 24 : […]...
- Медіана, бісектриса і висота трикутника. Властивість бісектриси рівнобедреного трикутника Розділ 3. Трикутники. Ознаки рівності трикутників § 15. Медіана, бісектриса і висота трикутника. Властивість бісектриси рівнобедреного трикутника 351. 1) AT – висота трикутника ABC. 2) AN – медіана трикутника ABC. 3) АР – бісектриса трикутника? AВС. 352. Оскільки AK – висота, то ∠BKA = ∠CKA = 90°. 353. Оскільки АК – бісектриса, то ∠BAK = […]...
- Вправи 176-224 176. Якщо три точки лежать на прямій, вони не можуть бути вершинами трикутника. 177. А) Кути прилеглі до сторони МР: ∠KMP і ∠KPM; Б) ∠KMP – протилежний стороні KP; В) сторона протилежна куту K – МР; В) сторони прилеглі до кута Р – KP і РМ. 178. Якщо два трикутники рівні, то їх периметри рівні. […]...
- Ознаки паралельності двох прямих § 3. Паралельні прямі. Сума кутів трикутника 13. Ознаки паралельності двох прямих Практичні завдання 300. 1) Кути АОМ і CEO – відповідні; 2) кути АОЕ і СЕК – відповідні; 3) кути АОE і OED – різносторонні; 4) кути АОЕ і CEO – односторонні. 1) відповідні; 2) односторонні; 3) різносторонні. 301. 1) ∠1 i ∠5; ∠2 […]...
- Вправи 225-273 225. L ⊥ AB; X – точка прямої l; О – середина AB. ?АОХ = ?BOX (за першою ознакою рівності трикутників). 1) АО = OB; 2) ∠3 = ∠4 = 90°; 3) ОХ – спільна сторона. З цього випливає АХ = ВХ, отже, точка X рівновіддалена від кінців відрізка А і В. 226. Три прямі […]...
- Сума кутів трикутника Геометрія Основні властивості найпростіших геометричних фігур Сума кутів трикутника Теорема. Сума кутів трикутника дорівнює . Із цієї теореми випливають наслідки: 1. У будь-якому трикутнику принаймні два кути гострі (тобто в трикутнику не може бути більше одного прямого або тупого кута). 2. Кути рівностороннього трикутника дорівнюють . Зовнішнім кутом трикутника при даній вершині називається кут, суміжний […]...
- Властивості й ознака рівнобедреного трикутника Розділ 1. Найпростіші геометричні фігури та їх властивості § 12. Властивості й ознака рівнобедреного трикутника 476. На мал. 72: ML і МК – бічні сторони, KL – основа, ∠K = ∠L. 477. KD = DF, КЕ = EF, ∠K = ∠F, ∠KDE = ∠FDE, ∠DEK = ∠DEF = 90°. 478. Щоб провести бісектрису, медіану і […]...
- Вправи 275-324 275. Кут В. а) ВА = ВС, ?АВС – рівнобедрений, у нього дві сторони рівні; Б) ∠A = ∠C. 276. ∠A = 60°; AD – бісектриса кута А. BC ⊥ AD; AB = AC; ∠B = ∠C. 277. AB = ВС; АС – основа. Нехай АВ = ВС = х м, тоді АС = (х […]...
- ПРЯМОКУТНИЙ ТРИКУТНИК РОЗДІЛ 3 ТРИКУТНИКИ & 16. ПРЯМОКУТНИЙ ТРИКУТНИК Трикутник наливають прямокутним, якщо один із його кутів – прямий. Сума двох інших його кутів дорівнює 90°, бо 180° – 90° = 90°. Сторона прямокутного трикутника, що лежить проти прямого кута, – це гіпотенуза, дві інші його сторони – катети (мал. 196). На малюнку прямий кут іноді позначають […]...
- Розв’язування прямокутних трикутників Урок № 60 Тема. Розв’язування прямокутних трикутників Мета: працювати над засвоєнням учнями змісту поняття “розв’язати трикутник” та схем розв’язання чотирьох основних задач на знаходження невідомих сторін прямокутного трикутника. Сформувати вміння відтворювати зміст вивчених схем, а також застосовувати їх для розв’язування прямокутних трикутників. Тип уроку: застосування знань, умінь та навичок. Наочність та обладнання: конспект 2.3. Хід […]...
- Площа трикутника Геометрія Площі фігур Площа трикутника , де h – висота, a – сторона, до якої проведена ця висота. Оскільки , то . Висоти трикутника обернено пропорційні сторонам, на які вони опущені. Зверніть увагу: більшій стороні трикутника відповідає менша висота, і навпаки. , , де P – периметр трикутника, r – радіус вписаного кола. , , […]...
- Теорема синусів Геометрія Розв’язування трикутників Теорема синусів Теорема 1 (синусів). Сторони трикутника пропорційні до синусів протилежних кутів. У трикутнику, зображеному на рисунку, за теоремою синусів маємо: . Теорема 2. Якщо R – радіус кола, описаного навколо трикутника, то , або , де a – сторона трикутника, а – протилежний цій стороні кут. Теорема 3. У трикутнику проти […]...