Головна ⇒ 📌Довідник з геометрії ⇒ Зрізаний конус
Зрізаний конус
Геометрія
Тіла обертання
Зрізаний конус
Площина, паралельна площині основи конуса, перетинає конус по кругу, а бічну поверхню – по колу з центром на осі конуса. Така площина відтинає від конуса менший конус. Частина, що залишилась, називається Зрізаним конусом (див. рисунок):
;
Зверніть увагу на осьовий переріз зрізаного конуса. Це рівнобічна трапеція, в якої основи – діаметри основ зрізаного конуса, бічні сторони – твірні, висота – висота зрізаного конуса.
Отже, .
Sб, де , – формула для обчислення бічної поверхні зрізаного конуса.
(1 votes, average: 5.00 out of 5)
Loading...
Related posts:
- Куля, вписана в конус Геометрія Комбінації геометричних тіл Куля, вписана в конус Площина, яка містить вісь конуса, є площиною симетрії (рисунок нижче зліва). Осьовий переріз комбінації є рівнобедреним трикутником, у який вписане коло (рисунок справа). Трикутник – це осьовий переріз конуса, тобто – твірні конуса, AB – діаметр основи конуса, а коло – велике коло вписаної кулі. Отже, радіус […]...
- Конус Геометрія Тіла обертання Конус Круговим конусом називається тіло, яке складається з круга – Основи конуса, точки, яка не лежить у площині цього круга, – Вершини конуса і всіх відрізків, що сполучають вершину конуса з точками основи. Відрізки, що сполучають вершину конуса з точками кола основи, називаються Твірними конуса. Конус називається Прямим (далі просто “конус”), якщо […]...
- Конус і зрізаний конус 983. Нехай дано конус, твірна якого AM = l, і нахилена до площини основи під кутом ∠MAO = α. А) ΔAMO – прямокутний. OM – висота, OM = l × sin α; Б) AO – радіус основи конуса. AO = l × cos α; В) ΔAMB – осьовий переріз; Г) площа основи конуса – площа […]...
- Конус, вписаний у кулю Геометрія Комбінації геометричних тіл Конус, вписаний у кулю Вершина конуса лежить на сфері (рисунок нижче зліва). Основа конуса лежить на сфері. Комбінація є симетричною відносно площини, що містить вісь конуса. У такому перерізі дістанемо трикутник, вписаний у коло (рисунок справа). Трикутник рівнобедрений. Бічні сторони – твірні конуса, коло – велике коло описаної кулі. Отже, радіус […]...
- Властивості конуса 1. 1) Твірна конуса не може утворювати з його основою прямий кут, оскільки Вона є гіпотенузою трикутника обертання, яка утворює бічну поверхню конуса. 2) Теж не може (обгрунтування у п. 1). Якщо конус зрізаний 1) ні; 2) так. Відповідь: 1) ні; 2) ні для зрізаного конуса 1) ні, 2) так. 2. Нехай SA – твірна […]...
- Інші комбінації геометричних тіл Геометрія Комбінації геометричних тіл Інші комбінації геометричних тіл Конус є вписаним у циліндр (див. рисунок нижче), коли основа конуса збігається з нижньою основою циліндра, а вершина конуса – центр верхньої основи циліндра. Осі циліндра і конуса в цьому випадку збігаються. Циліндр, вписаний у конус (див. рисунок нижче), якщо нижня основа циліндра лежить на основі конуса, […]...
- Конус. Площа поверхні та об’єм конуса УРОК № 57 Тема. Конус. Площа поверхні та об’єм конуса Мета уроку: повторення, приведення в систему й розширення відомостей про конус, площу поверхні та об’єм конуса; формування вмінь учнів знаходити площі поверхонь і об’єми конусів. Тип уроку: комбінований. Наочність і обладнання: таблиця “Початкові відомості стереометрії” [13]; моделі конусів. Вимоги до рівня підготовки учнів: пояснюють, що […]...
- ЦИЛІНДР. КОНУС. КУЛЯ Розділ 3 ВІДНОШEННЯ І ПРОПОРЦІЇ § 18. ЦИЛІНДР. КОНУС. КУЛЯ У 5 класі ви вже ознайомилися з просторовими фігурами: прямокутним паралелепіпедом і кубом. ь на малюнок 56. Ви бачите предмети, які використовують у побуті. У сі вони мають одну й ту саму форму – циліндра (мал. 57). Мал. 56 Мал. 57 Мал. 58 Maл. 59 […]...
- Циліндр Геометрія Тіла обертання Циліндр Круговим циліндром називається тіло, яке складається з двох кругів, що не лежать в одній площині й суміщаються паралельними перенесенням, і всіх відрізків, що сполучають відповідні точки цих кругів (див. рисунок). Круги називаються Основами циліндра, а відрізки, що сполучають точки кіл кругів, – Твірними циліндра. Основи циліндра рівні й лежать у паралельних […]...
- Зрізаний конус – СТЕРЕОМЕТРІЯ Формули й таблиці МАТЕМАТИКА СТЕРЕОМЕТРІЯ Зрізаний конус...
- Конуси 1050. ΔSAPO: ∠АОР = 90°, ОЕ = АЕ = ЕР = 6,5 см → АР = 13 см. АО = 5 см. R = AO, L = АР = 13 см, r = 5 см. Sп. к. = πrl + πr2 = π(5 × 13 + 52) = 90π. S = 90π см2. 1051. ΟΑ […]...
- Трапеція Геометрія Чотирикутники Трапеція Трапецією називається чотирикутник, у якого тільки дві протилежні сторони паралельні. Ці сторони називаються Основами трапеції, а дві інші – Бічними сторонами. Трапеція, в якої бічні сторони рівні, називається Рівнобічною (див. рисунок нижче зліва). Якщо одна з бічних сторін трапеції перпендикулярна до основ, трапеція називається Прямокутною (рисунок нижче справа). Теорема 1. Кути трапеції, […]...
- Об’єм конуса і зрізаного конуса 1295. Нехай SA – твірна конуса, ∠SAO = α, SA = l. З ΔSAO : SO = SA × sin ∠SAO = I sin α, AO = AS × cos ∠SAO = І × cos α. Отже, об’єм конуса V дорівнює: Відповідь: 1296. Нехай радіус основи свинцевого конуса дорівнює r, а висота циліндра – H. […]...
- Циліндр, описаний навколо кулі Геометрія Комбінації геометричних тіл Циліндр, описаний навколо кулі Площина, проведена через центр кулі паралельно твірним циліндра (рисунок нижче зліва), є площиною симетрії тіла. У цьому випадку висота циліндра дорівнює діаметру кулі. В осьовому перерізі цього тіла отримаємо прямокутник, у який вписане коло (рисунок справа). Але із цього випливає, що осьовий переріз даного циліндра – квадрат. […]...
- Об’єми круглих тіл Геометрія Об’єми тіл Об’єми круглих тіл Об’єм циліндра (див. рисунок) дорівнює добутку площі його основи та висоти. ; . Об’єм конуса (див. рисунок) дорівнює одній третині добутку площі його основи та висоти. . . Об’єм зрізаного конуса (див. рисунок): ....
- Куб, конус. Креслення розгорток куба, конуса УРОК 2 Тема. Куб, конус. Креслення розгорток куба, конуса Мета: навчити креслити розгортки куба, конуса; вдосконалювати уміння та навички роботи з папером; розвивати конструкторські уміння та навички; прищеплювати любов до праці; виховувати охайність, посидючість, працьовитість, правила естетики. Обладнання: папір, ножиці, клей, пензлик, олівець, гумка, серветка, таблиця для гри “Вгадайте слово”, циркуль. ХІД УРОКУ І. Організаційний […]...
- Тіла обертання 1008. Осьовий переріз – це ΔARB1, де BB1 = 2 × СВ = 4 (см), АС + В 1В, В 1C = СB. S = 4 см2. 1009. Sб. ц. = 2πrh = 2π × 2 × 10 = 40π (см2), Sб = 40π см2. 1010. Sб. ц. = 4 × 5 = 20 (см2), […]...
- Рівнобедрений трикутник Геометрія Основні властивості найпростіших геометричних фігур Рівнобедрений трикутник Трикутник називається Рівнобедреним, якщо у нього дві сторони рівні. Ці сторони називаються Бічними сторонами, а третя сторона – Основою трикутника. На рисунку: ABC – рівнобедрений трикутник; – бічні сторони; AC – основа. Теорема 1. У рівнобедреному трикутнику кути при основі є рівними. Теорема 2. У рівнобедреному трикутнику […]...
- Об’єм кулі Геометрія Об’єми тіл Об’єм кулі На рисунку зображено кулю, кульовий сегмент і кульовий сектор. Об’єм кулі: , де R – радіус кулі. Об’єм кульового сегмента: , де H – висота кульового сегмента, R – радіус кулі. Об’єм кульового сектора: , де R – радіус кулі, H – висота відповідного кульового сегмента. Іноді треба знайти об’єм […]...
- Куля Геометрія Тіла обертання Куля Кулею називається тіло, що складається з усіх точок простору, які розташовані від даної точки на відстані, що не більша за дану. Ця точка називається Центром кулі, а дана відстань – Радіусом кулі. Межа кулі називається Кулевою поверхнею, або Сферою. Відрізок, що сполучає дві точки кульової поверхні й проходить через центр кулі, […]...
- Циліндр. Площа поверхні та об’єм циліндра УРОК № 56 Тема. Циліндр. Площа поверхні та об’єм циліндра Мета уроку: повторення, приведення в систему й розширення відомостей про циліндр, площу поверхні та об’єм циліндра; формування вмінь учнів знаходити площі поверхонь і об’єми циліндрів. Тип уроку: комбінований. Наочність і обладнання: таблиця “Початкові відомості стереометрії” [13]; моделі циліндрів. Вимоги до рівня підготовки учнів: пояснюють, що […]...
- Прямий круговий конус – СТЕРЕОМЕТРІЯ Формули й таблиці МАТЕМАТИКА СТЕРЕОМЕТРІЯ Прямий круговий конус...
- Циліндр 940. Нехай дано циліндр, ABCD – осьовий переріз циліндра, AO = r – радіус циліндра, AC = d – діагональ осьового перерізу: А) ΔABC — прямокутний. BC – висота циліндра; Б) SABCD – площа діагонального перерізу. В) Площа бічної поверхні: Г) Площа поверхні циліндра 941. Нехай дано циліндр, діагональ осьового перерізу циліндра дорівнює D і […]...
- Вписані кулі Геометрія Комбінації геометричних тіл Вписані кулі Якщо куля вписана в призму, то в її перпендикулярний переріз можна вписати коло. Висота призми дорівнює діаметру кола, вписаного в перпендикулярний переріз призми, тобто діаметру вписаної кулі. Центр кулі – середина висоти призми, що проходить через центр кола, яке вписане в перпендикулярний переріз. Центр кулі, яка вписана в пряму […]...
- Трапеція – ЧОТИРИКУТНИКИ Формули й таблиці МАТЕМАТИКА ЧОТИРИКУТНИКИ Трапеція Щонайменше дві сторони паралельні, а дві інші – непаралельні Середня лінія трапеції – відрізок, що сполучає бічні сторони трапеції....
- Означення трапеції. Окремі види трапецій Урок № 13 Тема. Означення трапеції. Окремі види трапецій Мета: сформувати в учнів поняття трапеції, її елементів; розглянути означення рівнобічної та прямокутної трапецій, зміст властивостей кутів трапеції, прилеглих до бічної сторони, та кутів рівнобічної трапеції. Формувати вміння: – відтворювати вивчені твердження; – виконувати рисунок за описом; – за готовим рисунком знаходити елементи трапеції; – розв’язувати […]...
- Об’єм піраміди і конуса 1. Об’єм Піраміди Хеопса V дорівнює: 2. Знайдемо відношення довжин висоти і сторони основи на прикладі піраміди Хеопса. Площа основи піраміди – квадрат з площею 5,3 га. Отже, сторона основи дорівнює приблизно 230,22 м. Відношення стoрони основи до висоти: що приблизно дорівнює Співвідношенню золотого перерізу. З. Нехай висота n-кутної піраміди Н – 10 м. 1. […]...
- Окремі види трапецій та їх властивості Урок № 14 Тема. Окремі види трапецій та їх властивості Мета: доповнити знання учнів властивостями та ознаками окремих видів трапецій і домогтися засвоєння змісту вивчених тверджень; сформувати вміння відтворювати вивчені властивості та ознаки окремих видів трапецій, а також використовувати їх у здійсненні послідовних міркувань під час розв’язування задач. Тип уроку: застосування знань, умінь та навичок. […]...
- Тіла і поверхні обертання 905. На рисунку тіло, утворене обертанням прямокутника навколо його сторони. 906. А) Тіло, утворене обертанням прямокутного трикутника навколо катета, Б) Тіло, утворене обертанням прямокутного трикутника навколо гіпотенузи. ΔABC – прямокутний, AB – гіпотенуза. 907. Площина симетрії тіла обертання проходить через його вісь. 908. Див. рис. 909. У площині прямокутника ззовні його і паралельно одній з […]...
- Властивості призми 1. 2. 3. Ні, не можна. 4. Бічні ребра перпендикулярні до основи. Усі бічні грані – прямокутники. Бічне ребро є висотою призми. Площа бічної поверхні – добуток периметра Основи на довжину бічного ребра. 5. Так, може. Див. мал. до № 2. 6. 1) Основа правильної призми – правильний багатокутник, Усі бічні грані – рівні прямокутники. […]...
- Комбінації геометричних фігур 1138. А2 =Q, 1139. D = 3а2, 1140. V = а3, 1141. ΔABD: ∠A = 90°, АВ = 6 см, AD =8 см. BD = 10 см. BB1DD – прямокутник, ∠B1DB =45° → ВВ1 = BD = 10 см. АA1 =ВВ1 =10 см. Vпарал. = 6 × 8 × 10 = 480 (см3)· 1142. Рис. […]...
- Описані кулі Геометрія Комбінації геометричних тіл Описані кулі Кожна грань вписаного у сферу многогранника є вписаним у деяке коло многокутником. Основи перпендикулярів, які опущені з центра описаної кулі на площини граней, є центрами описаних навколо граней кіл. Отже, центром кулі, описаної навколо многогранника, є точка перетину перпендикулярів до площини граней, які проведені через центри кіл, описаних навколо […]...
- Побудова перерізів многогранників Урок 20 Тема. Побудова перерізів многогранників Мета уроку: формування вмінь учнів застосовувати властивості паралельних площин до розв’язування вправ, побудови перерізів. Обладнання: стереометричний набір. Хід уроку І. Перевірка домашнього завдання. 1. Три учні відтворюють розв’язування задач № 28, 30, 31 на дошці, в цей час клас пише математичний диктант. 2. Математичний диктант. Через вершини А, В, […]...
- Геометричні тіла і поверхні 219. Дано: FABCD – піраміда правильна, AB = 6 см, ∠DFC = 60°. 1) Знайти SABCD i висоту FO. SABCD = 62 = 36 (см2). ΔDFC, DF = FC за умовою І ∠DFC = 60° → DF = FC = DC = 6 (см). Відповідь: 36 см2, 2) ∠FCA – ? Відповідь: 3) ∠AFC – […]...
- Вписана та описана сфера 1. Нехай О А – радіус кулі, ОА = 1 см. АВ = ΚΚ1 = 2ОА = 2 см. CD = 2СО = 2 см. Sбіч. = PKLMN× КК1 = 4 × 2 × 2 = 16 (см2). Відповідь: 16 см2. 2. Нехай АВ =AD = ВВ1 = а. З ΔABD: З ΔΒ1BD: В1D2 = […]...
- Середня лінія трапеції Урок № 18 Тема. Середня лінія трапеції Мета: сформувати в учнів поняття середньої лінії трапеції; працювати над засвоєнням змісту властивості середньої лінії трапеції, а також схеми її доведення. Формувати в учнів уміння: – відтворювати зміст вивчених на уроці тверджень; – виконувати зображення середньої лінії трапеції; – використовувати властивість середньої лінії трапеції для розв’язування задач; – […]...
- Многогранник Геометрія Многогранники Многогранник – це таке тіло, поверхня якого складається із скінченної кількості плоских многокутників. Многогранник називається Опуклим, якщо він лежить по один бік від площини кожного з плоских многокутників на його поверхні. Спільна частина такої площини й поверхні опуклого многокутника називається Гранню. На рисунку нижче зліва зображений неопуклий многогранник; на рисунку справа – опуклий. […]...
- Об’єми многогранників Геометрія Об’єми тіл Об’єми многогранників Об’єм будь-якої призми дорівнює добутку площі основи та висоти. . На рисунках наведені приклади призм із різними основами. Для прямокутного паралелепіпеда отримаємо , де a, b, c – його виміри. Для куба , де a – довжина ребра. Для похилої призми (рисунок нижче зліва) об’єм можна обчислити як добуток площі […]...
- Стереометрія Геометрія Стереометрія Стереометрія – це розділ геометрії, в якому вивчаються фігури в просторі. Основні фігури в просторі: точка, пряма і площина....
- Правильні многокутники Геометрія Многокутники Правильні многокутники Опуклий многокутник називається Правильним, якщо в нього всі сторони рівні й усі кути рівні. Многокутник називається Вписаним у коло, якщо всі його вершини лежать на деякому колі. Многокутник називається Описаним навколо кола, якщо всі його сторони дотикаються до деякого кола. Теорема 1. Правильний опуклий многокутник є вписаним у коло й описаним […]...