Головна ⇒ 📌Довідник з математики ⇒ Розв’язування найпростіших тригонометричних рівнянь
Розв’язування найпростіших тригонометричних рівнянь
Математика – Алгебра
Тригонометричні функції
Розв’язування найпростіших тригонометричних рівнянь
1. cos x = a
Розв’язки рівняння шукатимемо, спираючись на рисунок 1 або на рисунок 2.
Якщо , розв’язків немає.
, , .
, , .
, ,
Рис. 2
Загальний випадок : , x = ±arccosa + 2πn,.
У випадках, коли , , теж можна користуватися загальною формулою, але це не так раціонально.
Розв’язки, які описуються загальною формулою, можна поділити на дві серії:
x1 = arccosa + 2πn, n Є Z;
x2 = – arccosa + 2πn, n Є Z.
2. sin x = a
Розв’язки шукатимемо, спираючись на рисунок 1 або на рисунок 2.
Якщо , розв’язків
, , n Є Z.
, , n Є Z.
, , n Є Z.
Загальний випадок :
, k Є Z.
Рис. 1
Рис. 2
Множина розв’язків розбивається на дві серії:
k = 2n, x1 = arcsina + 2πn, n Є Z;
k = 2n + 1, x2 = π – arcsina + 2πn, n Є Z.
3. tg x = a
Розв’язки запишемо, спираючись на рисунок зліва або на рисунок справа нижче.
, n Є Z.
4. ctg x = a
, n Є Z.
Якщо a = 0, , n Є Z.
Якщо , можна звести дане рівняння до рівняння .
Приклади
1) ;
;
, k Є Z;
, k Є Z;
, k Є Z;
, k Є Z.
Множину розв’язків можна розбити на дві серії:
, n Є Z;
, n Є Z;
, n Є Z;
, n Є Z.
2) ;
;
, n Є Z;
, n Є Z;
, n Є Z;
, n Є Z.
(1 votes, average: 5.00 out of 5)
Loading...
Related posts:
- Розв’язування найпростіших тригонометричних рівнянь. Рівняння sin t = a УРОК 21 Тема. Розв’язування найпростіших тригонометричних рівнянь. Рівняння sin t = а Мета уроку: засвоєння учнями виведення і застосування формули для коренів рівняння sin t = а. Обладнання: Таблиця “Рівняння sin t = а”. І. Перевірка домашнього завдання 1. Відповіді на питання, що виникли при виконанні домашніх завдань. 2. Самостійна робота. Варіант 1 Розв’яжіть рівняння: […]...
- Розв’язування найпростіших тригонометричних рівнянь. Рівняння cos t = a УРОК 20 Тема. Розв’язування найпростіших тригонометричних рівнянь. Рівняння cos T = a Мета уроку: засвоєння учнями виведення і застосування формули для знаходження коренів рівняння cos t = a. Обладнання: Таблиця “Рівняння cos t = a”. І. Перевірка домашнього завдання Математичний диктант Обчисліть: 1) arcsin ; 2) arcos ; 3) arctg ; 4) arcsin; 5) arccos; […]...
- Розв’язування найпростіших тригонометричних рівнянь. Рівняння tg t = a УРОК 22 Тема. Розв’язування найпростіших тригонометричних рівнянь. Рівняння tg T = a. Мета уроку: зсвоєння учнями виведення і застосування формули для знаходження коренів рівняння tg t = a (ctg t = а). Обладнання: Таблиця “Рівняння tg t = а і ctg t = a”. І. Перевірка домашнього завдання 1. Перевірити наявність домашніх завдань в зошитах […]...
- Деякі способи розв’язування тригонометричних рівнянь Математика – Алгебра Тригонометричні функції Деякі способи розв’язування тригонометричних рівнянь 1. Рівняння, що зводяться до квадратних . легко виразити через за допомогою основної тригонометричної тотожності : . Отже, ; . Нехай , . ; ; . 1) ; , k Є Z. 2) ; , k Є Z. Відповідь: , k Є Z; , k […]...
- Розв’язування найпростіших тригонометричних нерівностей Математика – Алгебра Тригонометричні функції Розв’язування найпростіших тригонометричних нерівностей Найзручнішим є спосіб розв’язування тригонометричних нерівностей за допомогою тригонометричного кола. Приклади 1) . Побудуємо одиничне коло (див. рисунок нижче). Проведемо пряму . Вона перетинає коло у двох точках. Одна з них відповідає куту або , друга – куту або . Ці дві точки розбивають коло на […]...
- Розв’язування однорідних тригонометричних рівнянь УРОК 25 Тема. Розв’язування однорідних тригонометричних рівнянь Мета уроку: формування умінь учнів розв’язувати однорідні тригонометричні рівняння. І. Перевірка домашнього завдання 1. Обговорення розв’язування вправи № 2 (6; 9; 11) за готовими розв’язаннями. 2. Розв’язування аналогічних вправ. А) 1 + cos x + cos 2x = 0; Б) cos4 x – sin4 x = ; В) […]...
- Розв’язування тригонометричних рівнянь способом зведення до однієї тригонометричної функції УРОК 23 Тема. Розв’язування тригонометричних рівнянь способом зведення до однієї тригонометричної функції Мета уроку: формування умінь учнів розв’язувати тригонометричні рівняння способом зведення до однієї тригонометричної функції (алгебраїчний спосіб). І. Перевірка домашнього завдання 1. Відповіді на питання, що виникли у учнів при виконанні домашніх завдань. 2. Самостійна робота. Розв’яжіть рівняння: A) cosx = . (3 бали) […]...
- Розв’язування тригонометричних рівнянь способом розкладання на множники УРОК 24 Тема. Розв’язування тригонометричних рівнянь способом розкладання на множники Мета уроку: фрмування умінь учнів розв’язувати тригонометричні рівняння способом розкладання на множники. І. Перевірка домашнього завдання Перший учень пояснює розв’язування вправи № 2 (23), другий учень – вправи № 2 (30), третій – вправи № 2 (37). II. Сприймання і усвідомлення нового матеріалу Багато тригонометричних […]...
- Розв’язування найпростіших тригонометричних нерівностей УРОК 29 Тема. Розв’язування найпростіших тригонометричних нерівностей Мета уроку: формування умінь учнів розв’язувати найпростіші тригонометричні нерівності: tg t > a, tgt < a, ctg t < a, ctg t > a (tgt a, tgt a, ctg t a, ctg t a). І. Перевірка домашнього завдання 1. Відповіді на запитання, які виникли в учнів у процесі […]...
- Розв’язування тригонометричних рівнянь, систем та нерівностей УРОК 31 Тема. Розв’язування тригонометричних рівнянь, систем та нерівностей Мета уроку. Систематизувати навички і уміння розв’язувати тригонометричні рівняння, нерівності, системи. І. Перевірка домашнього завдання 1. Три учні відтворюють розв’язування нерівностей із домашнього завдання. 2. Колективне розв’язування нерівностей: A) sin 2x sin x – cos 2x cos х . Sin 2x sin x – cos 2x […]...
- Розв’язування систем тригонометричних рівнянь УРОК 27 Тема. Розв’язування систем тригонометричних рівнянь Мета уроку: познайомити учнів з окремими прийомами розв’язування систем тригонометричних рівнянь. І. Перевірка домашнього завдання 1. Чотири учні відтворюють розв’язування домашніх завдань: вправа № 2 (10; 18; 26; 38). 2. Усне розв’язування тригонометричних рівнянь, використовуючи таблицю “Тригонометричні рівняння”. 1 2 3 4 1 Sin x = 0 Cos […]...
- Основні властивості рівнянь Математика – Алгебра Рівняння Два рівняння називають Рівносильними, якщо вони мають одні й ті ж корені; рівняння, які не мають коренів, також вважають рівносильними. Основні властивості рівнянь 1. Якщо виконати тотожні перетворення деякої частини рівняння, то одержимо рівняння, рівносильне даному. 2. Якщо деякий доданок перенести з однієї частини рівняння в іншу, змінивши при цьому його […]...
- Приклади розв’язування системи тригонометричних рівнянь Математика – Алгебра Тригонометричні функції Приклади розв’язування системи тригонометричних рівнянь 1) Відповідь: , n Є Z; , n Є Z. 2) а) б) Відповідь: , n, k Є Z; , n, k Є Z....
- Розв’язування рівнянь графічним способом Математика – Алгебра Функції Розв’язування рівнянь графічним способом За допомогою графіків функцій можна розв’язувати рівняння графічним способом. Для цього треба побудувати в одній системі координат графіки обох частин рівняння й знайти абсциси точок їх перетину. Приклад. Розв’яжіть рівняння . Побудуємо графіки функції і в одній координатної системі (див. рисунок) і знайдемо абсиси точок їх перетину. […]...
- Графік лінійного рівняння з двома невідомими – Системи лінійних рівнянь Математика – Алгебра Системи лінійних рівнянь Графік лінійного рівняння з двома невідомими Графіком рівняння з двома невідомими називається множина всіх точок координатної площини, координати котрих є розв’язками цього рівняння. Графіком рівняння , у якому хоча б один із коефіцієнтів (a або b) відмінний від нуля, є пряма. Для побудови будь-якої прямої досить знати координати двох […]...
- Системи рівнянь – РІВНЯННЯ Формули й таблиці МАТЕМАТИКА РІВНЯННЯ Лінійне рівняння з однією змінною – рівняння, що зводиться до канонічного вигляду ах + b = 0, де х – змінна, а й b – константи. Корінь рівняння ах + b = 0 визначається формулою: х = – b/а – якщо а ≠ 0, множина розв’язків L = {-b/a}. – […]...
- Системи лінійних рівнянь з двома невідомими – Системи лінійних рівнянь Математика – Алгебра Системи лінійних рівнянь Системи лінійних рівнянь з двома невідомими Якщо треба знайти спільні розв’язки кількох рівнянь, то кажуть, що ці рівняння утворюють Систему рівнянь. Розв’язок системи рівнянь з двома невідомими – пара значень невідомих, яка є розв’язком кожного з рівнянь системи. Розв’язати систему рівнянь означає знайти всі її розв’язки або довести, що […]...
- Види неповних квадратних рівнянь і їх розв’язання Математика – Алгебра Квадратні корені Види неповних квадратних рівнянь і їх розв’язання 1. Якщо , , квадратне рівняння набуває вигляду і має один корінь . 2. Якщо , , квадратне рівняння набуває вигляду . Розв’язуючи його, маємо: ; або . Рівняння має два корені: і . 3. Якщо , , квадратне рівняння набуває вигляду . […]...
- Розв’язування систем рівнянь Математика – Алгебра Розв’язування систем рівнянь Розглянемо системи рівнянь, в яких одне або обидва рівняння другого степеня. 1. Щоб розв’язати систему рівнянь графічним способом, треба побудувати в одній системі координат графіки обох рівнянь системи й знайти координати точок перетину графіків. Ці точки і будуть розв’язками системи рівнянь. Наприклад: Графіком першого рівняння є коло з центром […]...
- Розв’язування рівнянь та задач за допомогою рівнянь Урок № 105 Тема. Розв’язування рівнянь та задач За допомогою рівнянь Мета: підгодовувати учнів до виконання тематичної контрольної роботи. Тип уроку: узагальнення та систематизації знань. Хід уроку I. Організаційний момент II. Перевірка домашнього завдання На окремих аркушах учні в завданнях 1 та 2 записують рівняння та його розв’язок; у завданні № 3 відповідь; після того […]...
- Графіки тригонометричних функцій Математика – Алгебра Тригонометричні функції Графіки тригонометричних функцій Для побудування графіків тригонометричних функцій візьмемо . Побудуємо графік функції (див. рисунок). Ця крива називається синусоїдою. Графік функції можна дістати з графіка функції паралельним перенесенням його вліво вздовж осі Ox на одиниць. Це випливає з формули . Побудуємо графік функції : Зверніть увагу: значення , , не […]...
- Рівняння з двома змінними – Системи лінійних рівнянь Математика – Алгебра Системи лінійних рівнянь Рівняння з двома змінними Лінійним рівнянням з двома невідомими Називається рівняння виду , де x і y – невідомі, a, b, і с – числа (Коефіцієнти рівняння). Розв’язком рівняння з двома невідомими називається пара значень невідомих, при яких рівняння перетворюється у правильну числову рівність. Наприклад: ; – розв’язок рівняння, […]...
- Розв’язування показникових рівнянь і систем показникових рівнянь УРОК 48 Тема. Розв’язування показникових рівнянь і систем показникових рівнянь Мета уроку. Формування уміння розв’язувати показникові рівняння і системи показникових рівнянь. І. Перевірка домашнього завдання 1. Чотири учні відтворюють розв’язування вправи № 1 (25, 28, 30, 46). 2. Усне розв’язування показникових рівнянь за допомогою таблиці 20 для усних обчислень “Показникові рівняння” 1 2 3 4 […]...
- Системи рівнянь з двома змінними. Графічний спосіб розв’язування систем рівнянь з двома змінними УРОК № 30 Тема. Системи рівнянь з двома змінними. Графічний спосіб розв’язування систем рівнянь з двома змінними Мета уроку: закріпити знання учнів про зміст означень: графік рівняння з двома змінними, система рівнянь з двома змінними, розв’язок системи рівнянь з двома змінними, а також алгоритмів побудови графіка рівняння з двома змінними та графічного способу розв’язування системи […]...
- Поняття рівняння. Розв’язування рівнянь 770. а) 5х = 3х + 4. Х = 2 – корінь рівняння, бo 5 • 2 = 3 • 2 + 4 – правильна рівність. Б) 2х + 8 = 7х. Х = 2 – не є коренем рівняння, 2 • 2 + 8 = 7 • 2 – неправильна рівність. В) 10 – […]...
- Лінійне рівняння з однією змінною. Розв’язування лінійних рівнянь з однією змінною і рівнянь, що зводяться до них Розділ 3. ЛІНІЙНІ РІВНЯННЯ ТА ЇХ СИСТЕМИ & 23. Лінійне рівняння з однією змінною. Розв’язування лінійних рівнянь з однією змінною і рівнянь, що зводяться до них Ми знаємо, як розв’язувати рівняння 2х = -8; х – 5; 0,01х -17. Кожне із цих рівнянь має вигляд ах = b, де х – змінна, а і b […]...
- Підсумковий урок з теми “Квадратний тричлен. Розв’язування рівнянь, що зводяться до квадратних рівнянь та їх використання для розв’язування текстових задач” Урок № 63 Тема. Підсумковий урок з теми “Квадратний тричлен. Розв’язування рівнянь, що зводяться до квадратних рівнянь та їх використання для розв’язування текстових задач” Мета: повторити, систематизувати та узагальнити знання і вміння учнів щодо можливості та способів застосування розв’язання квадратного рівняння для розкладання квадратного тричлена на лінійні множники, розв’язування біквадратних та дробово-раціональних рівнянь, а також […]...
- Розв’язування рівнянь Математика – Алгебра Раціональні числа Розв’язування рівнянь Властивості рівнянь Корені рівнянь не змінюються, якщо до обох частин додати будь-який доданок. Отже, при розв’язуванні рівнянь доданки можна переносити з однієї частини в другу, змінюючи при цьому їхні знаки на протилежні. Корені рівнянь не змінюються, якщо обидві його частини помножити або поділити на одне й те ж […]...
- Складання найпростіших окисно-відновних реакцій, підбір коефіцієнтів Тема 2 ХІМІЧНІ РЕАКЦІЇ Урок 28 Тема уроку. Складання найпростіших окисно-відновних реакцій, підбір коефіцієнтів Цілі уроку: розвивати навички складання окисно-відновних реакцій; закріпити навички складання хімічних рівнянь на прикладі найпростіших окисно-відновних реакцій, застосування методу електронного балансу для розміщення коефіцієнтів у рівняннях хімічних реакцій, що протікають зі зміною ступеня окиснення. Тип уроку: узагальнення й систематизації знань, умінь […]...
- Розв’язування систем двох лінійних рівнянь з двома змінними способом підстановки Розділ 3. ЛІНІЙНІ РІВНЯННЯ ТА ЇХ СИСТЕМИ & 28. Розв’язування систем двох лінійних рівнянь з двома змінними способом підстановки Графічний спосіб розв’язування систем рівнянь є досить громіздким і до того ж не завжди допомагає знайти точні розв’язки. Розглянемо інші (не графічні) способи розв’язування систем лінійних рівнянь з двома змінними, які називають аналітичними. Почнемо зі способу […]...
- Розв’язування логарифмічних рівнянь Математика – Алгебра Логарифмічна функція Розв’язування логарифмічних рівнянь Логарифмічними рівняннями називають такі рівняння, які містять змінну під знаком логарифма. Найпростішим логарифмічним рівнянням є , де , . Корінь цього рівняння дорівнює . Рівняння , де , , рівносильне системі: Зверніть увагу: у цій системі можна випустити одну з нерівностей. Із цього випливає, що для розв’язання […]...
- Приклади розв’язування типових задач з геометрії для найпростіших фігур Геометрія Приклади розв’язування типових задач з геометрії для найпростіших фігур Треба добре розуміти: коли ми доводимо теорему або розв’язуємо задачу, кожне твердження треба обгрунтувати, тобто показати, що воно випливає з якої-небудь аксіоми чи раніше доведеної теореми. Якщо ви спираєтеся на якусь теорему, ретельно перевірте, чи повністю виконано її умову. Наприклад, при застосуванні першої ознаки рівності […]...
- Рівняння. Основні властивості рівнянь Урок № 97 Тема. Рівняння. Основні властивості рівнянь Мета: закріпити знання учнів про властивості (рівносильність) рівнянь; вдосконалити вміння розв’язувати рівняння із застосуванням властивостей рівносильності та інших властивостей (перетворення) виразів. Тип уроку: застосування знань, умінь та навичок. Хід уроку I. Організаційний момент II. Перевірка домашнього завдання Гра “Знайди помилку”. Учитель заздалегідь записує розв’язання кількох типових рівнянь […]...
- Система двох лінійних рівнянь з двома змінними та її розв’язок. Розв’язування систем лінійних рівнянь з двома змінними графічно Розділ 3. ЛІНІЙНІ РІВНЯННЯ ТА ЇХ СИСТЕМИ & 27. Система двох лінійних рівнянь з двома змінними та її розв’язок. Розв’язування систем лінійних рівнянь з двома змінними графічно Приклад 1. Маска й трубка для підводного плавання разом коштують 96 грн, причому маска на 16 грн дорожча за трубку. Скільки коштує маска і скільки трубка? Р о […]...
- Розв’язування рівнянь. Основні властивості рівняння Розділ 4 Раціональні числа і дії мідними §48. Розв’язування рівнянь. Основні властивості рівняння До цього часу ми розв’язували рівняння, використовуючи залежності між компонентами дій. Розглянемо основні властивості рівняння, що нададуть можливість значно спростити процес розв’язування знайомих нам видів рівнянь та навчитися розв’язувати нові види рівнянь. Приклад 1. Розв’язати рівняння 3 ∙ (x + 2) = […]...
- РОЗВ’ЯЗАННЯ РІВНЯНЬ ПИСЬМОВЕ МНОЖЕННЯ І ДІЛЕННЯ НА ДВОЦИФРОВЕ ЧИСЛО РОЗВ’ЯЗАННЯ РІВНЯНЬ 342. Випиши рівності. Серед них підкресли рівняння. Що називають рівнянням? Наведи власні приклади рівнянь. 24 ∙ 39 = 936 74 ∙ 11 х : 15 = 41 24 ∙ х = 936 206 : 2 615 : 41 = 15 343. Що таке корінь рівняння? Чи […]...
- Системи рівнянь з двома змінними УРОК 64 Тема. Системи рівнянь з двома змінними Тестові завдання 1. Яка з пар чисел є розв’язком рівняння 3х2 – 2ху +1 = 0 ? А) (1; 2); б) (2; 2); в) (0; 3); г) (0;0)? 2. Яка з пар чисел є розв’язком системи А) (3; 0); б) (2; 1); в) (1; 2); г) (0; […]...
- Розв’язування показникових рівнянь УРОК 46 Тема. Розв’язування показникових рівнянь Мета уроку. Формування умінь учнів розв’язувати показникові рівняння способом зведення до спільної основи; способом винесення за дужки спільного множника; способом зведення до спільного показника; графічним способом. І. Перевірка домашнього завдання Два учні на відкидних дошках відтворюють розв’язування вправ відповідно № 1, 3, 5, 7, 9 і № 2, 4, […]...
- РОЗВ’ЯЗУВАННЯ ЛІНІЙНИХ РІВНЯНЬ Цілі: – навчальна: удосконалити вміння розв’язувати лінійні рівняння; формувати вміння розв’язувати рівняння зі змінною під знаком модуля та рівняння з параметрами, які зводяться до лінійних; – розвивальна: формувати вміння орієнтуватися в нестандартній ситуації; розвивати творчі здібності, кмітливість учнів; – виховна: виховувати наполегливість у досягненні мети, віру у власні сили, працьовитість; Тип уроку : удосконалення знань, […]...
- Формула коренів квадратного рівняння Математика – Алгебра Квадратні корені Формула коренів квадратного рівняння Корені квадратного рівняння знаходять за формулою . Вираз називається Дискримінантом і позначається буквою D. Кількість коренів 1. Якщо , рівняння не має коренів. 2. Якщо , рівняння має один корінь: . 3. Якщо , рівняння має два корені: . Для квадратних рівнянь із парним другим коефіцієнтом […]...