Математика – Алгебра Десяткові дроби Властивості десяткового дробу Якщо до десяткового дробу дописати справа нуль (або декілька нулів), то дістанемо дріб, який дорівнює даному. Якщо десятковий дріб закінчується нулями, то ці нулі можна відкинути
Математика – Алгебра Модуль і його властивості Модуль числа – це відстань від 0 до точки, що відповідає цьому числу на координатній прямій, виміряна в одиничних відрізках. Отже, для всіх значень a. Властивості модуля
Математика – Алгебра Нехай – неперервна функція, невід’ємна на відрізку . Розіб’ємо відрізок на n рівних частин точками , де . Утворимо добутки , і так далі й знайдемо їх суму . Знайдемо .
Математика – Алгебра Логарифмічна функція Логарифмічні функції Функцію називають Логарифмічною функцією з основою a. Логарифмічна та показникова функції є взаємно оберненими. Властивості логарифмічної функції : Графіки показникової (рисунок 1) і логарифмічної (рисунок 2) функцій
Математика – Алгебра Системи лінійних рівнянь Рівняння з двома змінними Лінійним рівнянням з двома невідомими Називається рівняння виду , де x і y – невідомі, a, b, і с – числа (Коефіцієнти рівняння). Розв’язком
Математика – Алгебра Функції та графіки Функція може задаватися описом, таблицею, графіком, формулою тощо. Область визначення функції зручно записувати за допомогою числових проміжків. Приклади 1) ; ; 2) ; ; 3) ; ; 4)
Математика – Алгебра Тригонометричні функції Знаки тригонометричних функцій З означення тригонометричних функцій легко зробити висновок щодо знаків тригонометричних функцій у координатних чвертях: Зміна тригонометричних функцій при зростанні “a” від 0 до 2п Зміну ,
Математика – Алгебра Геометричні фігури й величини Многокутник На рисунку ABCDE – п’ятикутник. A, B, С, D, E – вершини п’ятикутника; AB, BC, CD, DE, EA – сторони; AC, AD, BE, BD, CE –
Математика – Алгебра Геометричні фігури й величини Прямокутний паралелепіпед Прямокутний паралелепіпед (див. рисунок) має 8 вершин, 12 ребер, котрі можна розбити на 3 групи по 4 рівних, а також 6 граней (3 пари рівних
Математика – Алгебра Квадратні корені Раціональні числа – це числа, які можуть бути записані у вигляді , де m – ціле число, n – натуральне. Кожне раціональне число можна подати у вигляді нескінченного періодичного
Page 2 of 15«12345...10...»Last »