Алгебра векторів
1.
Побудуємо вектори
– одиничний вектор
2.
Побудуємо вектори
3.
Побудуємо вектори
4.
Побудуємо вектори
5.
6.
1) Побудуємо вектори
2) Побудуємо вектори
7.
Побудуємо вектори
8.
1) 2)
9.
Побудуємо вектори
Вектори та рівні.
10.
Накреслимо два ненульові вектори
Побудуємо
Побудуємо Таким чином,
11.
Побудуємо вектори
Вектори протилежно напрямлені.
12.
Побудуємо вектори
13.
1) Побудуємо паралелепіпед на векторах
Його діагональ – це вектор
2) Сумістимо вектори та побудуємо на них паралелограм,
Його діагональ – це сума векторів.
3) Сумістимо вектори та побудуємо на них паралелепіпед,
Його діагональ – це сума векторів.
4) Сумістимо вектори та побудуємо на них паралелограм,
Його діагональ – це сума векторів.
14.
Отримані вектори рівні.
15.
1)Так, може. Якщо – довільні неколінеарні вектори або колінеарні однаково напрямлені ненульові вектори.
2) Так, може. Якщо – довільні колінеарні протилежно напрямлені.
3) Ні, не може.
16.
1) Якщо і вектори співнапрямлені, то х = 3.
2) Якщо і вектори протилежно напрямлені, то х = -3.
17.
1) Щоб вектори були рівними, повинні виконуватися умови:
Вектори рівні, якщо х = 1,5 і у = 0,5.
2) Щоб вектори були рівними, повинні виконуватися умови:
Розв’яжемо систему:
Вектори рівні, якщо х = 4 і у = -2.
18.
1) Щоб вектори були колінеарні, повинні виконуватися умови:
х2 – x = 6; х2 – x – 6 = 0; x1 = 3, х2 = -2.
2) Щоб вектори були співнапрямлені, повинні виконуватися умови:
Розв’яжемо рівняння: 6 = – Зх(1 – x);
6 = -3х + 3×2; 3×2 – Зх – 6 = 0; х2 – х – 2 = 0: х1 = 2, х2 = -1;
Х = 2 – не задовольняє умові х < 0,
Отже, при х – -1 вектори співнапрямлені.
19.
Оскільки виконується рівність то
Вектор не можна подати у вигляді лінійної комбінації інших векторів,
Оскільки задані вектори компланарні.
20.
1) Вектори є компланарними.
2) Вектори не є компланарними.
3) Вектори є компланарними.
4) Вектори є компланарними.
21.
Оскільки то вектори компланарні.
22.
1)
2)
3)
4)
5)
23.
Тоді
24.
Тоді
Тоді
25.
Розкладемо вектор
тоді
Розкладемо вектор
тоді
Розкладемо вектор
26.
Розкладемо векторТоді
27.
1)
Тоді
2)
Related posts:
- Вектори в просторі (рівність векторів, колінеарність векторів, компланарність векторів). Додавання, віднімання векторів, множення вектора на число, властивості дій над векторами Урок 58 Тема. Вектори в просторі (рівність векторів, колінеарність векторів, компланарність векторів). Додавання, віднімання векторів, множення вектора на число, властивості дій над векторами Мета уроку: формування знань учнів про вектори в просторі, дії над векторами, заданими координатами, Формування вмінь застосовувати вивчений матеріал до розв’язування задач. Обладнання: схема “Вектори в просторі”. Хід уроку І. Перевірка домашнього […]...
- Додавання векторів Геометрія Вектори Додавання векторів Сумою векторів і називається вектор . Додавання векторів має переставну та сполучну властивості: ; для будь-яких , , . Теорема. Які б не були точки A, B, C, справджується векторна рівність: . Правило трикутника додавання векторів Щоб знайти суму довільних векторів і , треба від кінця вектора (див. рисунок) відкласти вектор […]...
- Віднімання векторів – Елементи векторної алгебри 3. Елементи векторної алгебри 3.3. Віднімання векторів Різницею двох векторів, спрямованих по одній прямій або паралельних один одному, є алгебраїчна різниця цих векторів. Щоб знайти різницю двох векторів, які мають різні напрями, треба розмістити обидва вектори так, щоб вони виходили з однієї точки. Потім сполучити кінці векторів вектором, спрямованим від від’ємника до зменшуваного. Цей вектор […]...
- Додавання векторів за правилом паралелограма – Елементи векторної алгебри 3. Елементи векторної алгебри 3.2. Додавання векторів за правилом паралелограма Щоб додати два вектори за правилом паралелограма, треба розмістити їх так, не змінюючи їх напряму, щоб вони виходили з однієї точки, й добудувати на кінцях векторів паралельні прямі. Діагональ одержаного паралелограма, проведена з точки, в якій суміщені початки обох векторів, є їх сумою....
- Додавання векторів – Елементи векторної алгебри 3. Елементи векторної алгебри Векторні величини (вектори) – це величини, які характеризуються числовими значеннями і напрямом: Скалярні величини (скаляри) – це величини, які характеризуються лише числовим значенням. Вони можуть бути додатними та від’ємними й додаються алгебраїчно. 3.1. Додавання векторів Якщо вектори спрямовані вздовж однієї прямої або якщо вони паралельні, то результуючий вектор дорівнює алгебраїчній сумі […]...
- Кут між векторами. Скалярний добуток векторів Урок 59 Тема. Кут між векторами. Скалярний добуток векторів Мета уроку: формування понять кута між векторами, скалярного добутку векторів. Формування вмінь учнів застосовувати вивчений матеріал до розв’язування задач. Обладнання: схема “Вектори в просторі” Хід уроку 1. Фронтальна бесіда з класом за контрольними запитаннями № 18- 20 з використанням схеми “Вектори в просторі” (див. с. 233). […]...
- Додавання векторів УРОК № 44 Тема. Додавання векторів Мета уроку: формування вміння додавати вектори, вивчення властивостей суми векторів; формування вмінь застосовувати вивчені властивості й означення до розв’язування задач. Тип уроку: комбінований. Наочність і обладнання: таблиця “Декартові координати та вектори на площині” [13]. Вимоги до рівня підготовки учнів: описують додавання векторів; відкладають вектор, що дорівнює сумі векторів; формулюють […]...
- Віднімання векторів УРОК № 45 Тема. Віднімання векторів Мета уроку: формування вмінь віднімати вектори, вивчення властивостей різниці векторів; формування вмінь застосовувати вивчені означення та властивості до розв’язування задач. Тип уроку: комбінований. Наочність і обладнання: таблиця “Декартові координати та вектори на площині”[13]. Вимоги до рівня підготовки учнів: описують віднімання векторів; відкладають вектор, що дорівнює різниці векторів; формулюють властивості […]...
- Скалярний добуток векторів УРОК № 49 Тема. Скалярний добуток векторів Мета уроку: формування поняття скалярного добутку векторів; формування вмінь застосовувати вивчені означення та властивості до розв’язування задач. Тип уроку: комбінований. Наочність і обладнання: таблиця “Декартові координати та вектори на площині”[13]. Вимоги до рівня підготовки учнів: формулюють означення скалярного добутку, його властивості; застосовують вивчені означення та властивості до розв’язування […]...
- Вектор. Модуль і напрям вектора. Рівність векторів УРОК № 42 Тема. Вектор. Модуль і напрям вектора. Рівність векторів Мета уроку: формування понять вектора, модуля вектора, напряму вектора; рівності векторів; формування вмінь застосовувати вивчені означення і властивості до розв’язування задач. Тип уроку: комбінований. Наочність і обладнання: таблиця “Декартові координати та вектори на площині” [13]. Вимоги до рівня підготовки учнів: описують вектор, модуль і […]...
- Скалярний добуток векторів Геометрія Вектори Скалярний добуток векторів Скалярним добутком векторів і називається число . Позначення: . . Очевидно, що . Розподільна властивість скалярного добутку: . Кутом між ненульовими векторами і називається кут BAC. Кутом між будь-якими двома ненульовими векторами і називається кут між векторами, що дорівнюють даним і мають спільний початок. Вважають, що кут між однаково напрямленими […]...
- Вектори у просторі – ВЕКТОРИ Формули й таблиці МАТЕМАТИКА ВЕКТОРИ Вектори у просторі Вектор – спрямований відрізок А – початок вектора В – кінець вектора Модуль вектора – довжина відрізка, який зображує вектор: ||. Два вектори рівні, якщо вони однаково спрямовані і мають рівні модулі. Координати вектора з початком у точці А(x1,y1,z1) і кінцем у точці В(х2,у2,z2). Рівні вектори мають […]...
- Розв’язування задач на застосування векторів Урок 60 Тема. Розв’язування задач на застосування векторів Мета уроку: формування вмінь учнів застосовувати вивчений матеріал до розв’язування задач. Обладнання: стінна таблиця “Вектори в просторі”. Хід уроку І. Перевірка домашнього завдання 1. Два учні відтворюють розв’язування задач № 55 (4), 56. 2. Фронтальне опитування. 1) Чому дорівнює скалярний добуток векторів, які задано координатами? 2) Як […]...
- Векторний добуток векторів 1. Векторний добуток векторів є вектором, а скалярний – числом. Векторний та скалярний добуток мають однакові властивості (крім комутативності). 2. За означенням модуля векторного добутку А отже, оскільки то 3. 1) За означенням У нашому випадку Скористаємось основною тригонометричною тотожністю: Тоді 2) За означенням У нашому випадку Скористаємось основою тригонометричною тотожністю: Тоді Оскільки 3) Рівність […]...
- Вектори в просторі – Декартові координати та вектори в просторі Геометрія Декартові координати та вектори в просторі Вектори в просторі Усі основні означення векторів у просторі залишаються такими самими, як означення векторів на площині (див. розділ “Геометрія. 8 клас”). Координатами вектора , де , , називають числа, , . Вектори рівні тоді, й тільки тоді, коли вони мають відповідно рівні координати. Це дає підставу позначити […]...
- ОПЕРАЦІЇ З ВЕКТОРНИМИ ВЕЛИЧИНАМИ Фізика підготовка до ЗНО комплексне видання МЕХАНІКА 1. ОСНОВИ КІНЕМАТИКИ 1.2. ОПЕРАЦІЇ З ВЕКТОРНИМИ ВЕЛИЧИНАМИ Вектор – напрямлений відрізок. Векторні величини мають числове значення (модуль), напрям, точку прикладання (рис. 3). Рис. З Проекція вектора на вісь Ох – довжина відрізка, який сполучає проекцію початку вектора на вісь Ох з проекцією кінця вектора на ту саму […]...
- Координати вектора УРОК № 43 Тема. Координати вектора Мета уроку: формування поняття координат вектора та вміння застосовувати вивчені означення і властивості до розв’язування задач. Тип уроку: комбінований. Наочність і обладнання: таблиця “Декартові координати та вектори на площині” [13]. Вимоги до рівня підготовки учнів: описують координати вектора; застосовують вивчені означення і властивості до розв’язування задач. Хід уроку I. […]...
- Множення вектора на число Геометрія Вектори Множення вектора на число Добутком вектораНа число називається вектор , тобто . Для будь-якого вектора і чисел і . Для будь-яких двох векторів і і числа . Теорема 1. Абсолютна величина вектора дорівнює . Напрям вектора , якщо , збігається з напрямом вектора , якщо , і протилежний напряму вектора , якщо . […]...
- Множення вектора на число УРОК № 47 Тема. Множення вектора на число Мета уроку: формування вміння множити вектор на число; вивчення властивостей множення вектора на число; формування вмінь застосовувати вивчені значення і властивості до розв’язування задач. Тип уроку: комбінований. Наочність і обладнання: таблиця “Декартові координати та вектори на площині”[13]. Вимоги до рівня підготовки учнів: описують множення вектора на число; […]...
- Колінеарні вектори УРОК № 48 Тема. Колінеарні вектори Мета уроку: формування поняття “колінеарні вектори”; вивчення властивості та ознаки колінеарних векторів; формування вмінь учнів застосовувати вивчені означення та властивості до розв’язування завдань. Тип уроку: комбінований. Наочність і обладнання: таблиця “Декартові координати та вектори на площині” [13]. Вимоги до рівня підготовки учнів: описують колінеарність векторів; застосовують вивчені означення та […]...
- Розкладання вектора за координатними осями Геометрія Вектори Розкладання вектора за координатними осями Вектор називається Одиничним, якщо його абсолютна величина дорівнює одиниці. Одиничні вектори, які мають напрями додатних координатних півосей, називаються Координатними векторами, або Ортами (див. рисунок). Позначення: ; . Оскільки координатні вектори відмінні від нуля й неколінеарні, то будь-який вектор можна розкласти за цими векторами: ....
- Координати вектора. Дії над векторами, що задані координатами 1. Запишемо координати вектора: 1) 2) 3) 4) 2. 1) 2) 3) 4) 5) 6) 3. 1) Запишемо розклад за координатними векторами: 2) Запишемо розклад за координатними векторами: 3) Запишемо розклад за координатними векторами: 4) Знайдемо координати векторів : Знайдемо координати вектора Запишемо розклад за координатними векторами: 5) Знайдемо координати векторів Знайдемо координати вектора Запишемо […]...
- Скалярний добуток векторів. Кут між векторами 233. А) Якщо то α = 90°, α – кут між векторами. Б) то α – гострий; А) то α – тупий. 234. А) Б) В) Г) 235. А) Б) 236. А) Б) В) Г) 237. А) Б) В) 238. α – кут між векторами А) Б) В) Г) 239. А) Звідси Б) Звідси В) […]...
- Застосування векторів 269. 5(х – 2) + 0 × (у + 1) – 3(z – 4) = 0; 5x – 10 – Зz + 12 = 0; 5x – Зz + 2 = 0 – рівняння шуканої площини. 270. 3(x – 1) – 4(y – 2) + 7(z + 3) = 0; 3x – 3 – 4у […]...
- Координати векторa Геометрія Вектори Координати векторa Нехай вектор має початком точку , а кінцем – точку . Координатами вектора називаються числа і . Позначення: або . . Очевидно, що . Теорема. Вектори рівні тоді й тільки тоді, коли вони мають рівні відповідні координати....
- Рух точки по колу – КІНЕМАТИКА ФІЗИКА Частина 1 МЕХАНІКА Розділ 1 КІНЕМАТИКА 1.4. Рух точки по колу Рух матеріальної точки по колу є окремим випадком криволінійного руху. Розглядаючи такі величини, як швидкість , прискорення , радіус-вектор , питання про вибір їхнього напряму не виникало, оскільки воно випливало з їхньої природи. Подібні вектори називають полярними. Вектори типу dφ, напрям яких пов’язаний […]...
- Тематична контрольна робота № 5 УРОК № 51 Тема. Тематична контрольна робота № 5 Мета уроку: контроль навчальних досягнень учнів з мети “Вектори”. Тип уроку: комбінований. Вимоги до рівня підготовки учнів: застосовують означення та властивості геометричних фігур при розв’язуванні задач. Хід уроку І. Тематичне оцінювання № 5 Тематичне оцінювання № 5 можна провести у вигляді тематичної контрольної роботи. Наводимо текст […]...
- Розв’язування задач координатно-векторним методом 1. 1) Введемо прямокутну систему координат із початком у точці В і спрямуємо вісь Оx вздовж ребра BA, Oz – вздовж ВВ1. Довжину ребра куба позначимо як а. Тоді координати точок: А(а; 0; 0;); С(0; а; 0); R(а; а; 0); C1(0; а; а). Знайдемо координати векторів і Знайдемо довжини векторів: Знайдемо кут між векторами: Кут […]...
- Прискорення. Прискорення при криволінійному русі – КІНЕМАТИКА ФІЗИКА Частина 1 МЕХАНІКА Розділ 1 КІНЕМАТИКА 1.3. Прискорення. Прискорення при криволінійному русі Градієнт швидкості матеріальної точки V з часом £ характеризують прискоренням Прискорення виражається в метрах на секунду в квадраті (СІ) та сантиметрах на секунду в квадраті (СГС). При прямолінійному русі вектор швидкості напрямлений уздовж однієї й тієї самої прямої – траєкторії, внаслідок чого […]...
- Тематичне оцінювання № 6 Урок 61 Тема. Тематичне оцінювання № 6 Мета уроку: перевірка навчальних досягнень учнів з теми “Кути та вектори у просторі”. Тематичне оцінювання № 6 можна провести шляхом виконання тематичної контрольної роботи. І. Тематична контрольна робота № 6 Варіант А 1. Сторона квадрата ОАВС дорівнює 5 (рис. 303). Запишіть координати вектора . (3 бали) 2. Із […]...
- Розкладання многочленів на множники 702. Перетворити його в добуток кількох виразів. 703. 1) ні; 2) ні; 3) так. 704. 1) ні; 2) так; 3) ні. 705. 1) ні; 2) ні; 3) так. 706. 1) ні; 2) ні; 3) так. 707. ні; 2) так; 3) ні. 708. ні; 2) ні; 3) так. Жодна з рівностей не є тотожністю. 1) ні, […]...
- Тематичне оцінювання з теми “Електромагнітні коливання й хвилі” 2-й семестр ЕЛЕКТРОДИНАМІКА 4. Електромагнітні коливання й хвилі УРОК 16/58 Тема. Тематичне оцінювання з теми “Електромагнітні коливання й хвилі” Мета уроку: контроль і оцінювання знань, умінь і навичок учнів з вивченої теми. Тип уроку: урок контролю й оцінювання знань. МЕТОДИЧНІ РЕКОМЕНДАЦІЇ Підсумкове тематичне оцінювання можна провести у вигляді контрольної роботи. Кожний варіант контрольної роботи містить […]...
- Магнітне поле постійного електричного струму. Закон Біо – Савара – Лапласа ФІЗИКА Частина 3 ЕЛЕКТРИКА І МАГНЕТИЗМ Розділ 9 МАГНЕТИЗМ. МАГНІТНЕ ПОЛЕ ЕЛЕКТРИЧНОГО СТРУМУ 9.3. Магнітне поле постійного електричного струму. Закон Біо – Савара – Лапласа У 1820 р. французькі вчені Ж. Біо і Ф. Савар дослідили магнітні поля, створені в повітрі прямолінійним струмом, коловим струмом, соленоїдом тощо. На основі багатьох дослідів вони дійшли таких висновків: […]...
- Дотична до кола, її властивості Розділ 4. Коло і круг. Геометричні побудови § 22. Дотична до кола, її властивості 607. Проведемо радіус ОР, а потім за допомогою косинця побудуємо пряму m, перпендикулярну до радіуса. За теоремою 2 пряма m є дотичною до кола. 608. Проведемо радіус ОМ, а потім за допомогою косинця побудуємо пряму n, перпендикулярну до радіуса. За теоремою […]...
- Системи двох лінійних рівнянь із двома змінними А) х = 2; у = 1 – розв’язок системи, бо 2 – 2 • 1 = 0 – правильна рівність; 2 + 3 • 1 = 5 – правильна рівність; Б) x = 0; у = 0 – не є розв’язком системи, бо 0 – 2 • 0 = 0 – правильна рівність, а […]...
- Вектори у просторі 156. ABCDEF – правильний шестикутник. А) Б) В) Але 157. 158. А) Б) В) 159. 160. А) Б) В) 161. 162. А(х; у; z). Тому -5 – х = З, x = -8; 4 – у = 4, у = 0; 1 – z = 2, z = -1. Отже, А(-8; 0; -1). 163. С(-2; […]...
- Пакта сунт серванда Пакта сунт серванда (лат. pacta sunt servanda – договори мають дотримуватися) – принцип міжнародного права, за яким договори є обов’язковими і повинні виконуватися добросовісно. Будь-який міжнародний договір, ухвалений належним чином, стає частиною національного права і, як наслідок, юридично зобов’язувальним. П. с. с.- основна норма всієї системи міжнародного права, яка підкреслює її універсальний характер....
- Колова швидкість § 5. Основи космонавтики 2. Колова швидкість Розглянемо орбіту супутника, який обертається по коловій орбіті на висоті Н над поверхнею Землі (рис. 5.3). Для того щоб орбіта була сталою і не змінювала свої параметри, повинні виконуватися дві умови: 1. вектор швидкості має бути напрямлений по дотичній до орбіти; 2. величина лінійної швидкості супутника має дорівнювати […]...
- ЯК ОПИСУЮТЬ МЕХАНІЧНИЙ РУХ Розділ ІІ Механічний рух & 10. ЯК ОПИСУЮТЬ МЕХАНІЧНИЙ РУХ Механічним рухом називають зміну положення тіла відносно інших тіл Предмети, відносно яких ми визначаємо свій рух, називають тілами відліку. Тілом у фізиці прийнято називати довільні предмети: машини, м’ячі, планети, літаки, тощо. Коли ми їдемо автомобілем, то змінюємо своє положення відносно дороги, дерев, будинків чи інших […]...
- Вправа 2 Вправа 2 1. Дано: Розв’язання: “ А) згідно з принципом суперпозиції полів: Оскільки силові лінії спрямовані в один бік, то модуль напруженості результуючого поля: Е = Е1 + Е2 Перевіримо одиниці фізичних величин: Підставимо числові значення: Б) згідно з принципом суперпозиції полів: Оскільки силові лінії протилежно спрямовані, то модуль напруженості результуючого поля: Е = Е1 […]...