Розв’язування логарифмічних нерівностей
УРОК 61
Тема. Розв’язування логарифмічних нерівностей
Мета уроку. Формування умінь учнів розв’язувати логарифмічні нерівності
І. Перевірка домашнього завдання
Перевірити наявність виконаних домашніх завдань та відповісти на запитання, що виникли в учнів при виконанні цих завдань.
II. Сприймання і усвідомлення розв’язування логарифмічних нерівностей (які розв’язуються введенням нової змінної)
Приклад 1. Розв’яжіть нерівність log х – log5 x > 2.
Нехай log5х = у, тоді отримаємо нерівність
Розв’яжемо отриману нерівність методом інтервалів (рис. 171): y (-; -1)(2; +).
Враховуючи заміну матимемо:
1) log5 x < -1; log5 x < log5 ; х ;
2) log5 x > 2; log5 x > log525; x (25; +). Отже, (25; +) – розв’язок даної нерівності.
Відповідь:
Приклад 2. Розв’яжіть нерівність .
Нехай lg x = у, тоді матимемо нерівність
; у? 1; ; ; .
Розв’яжемо отриману нерівність методом інтервалів (рис. 172): у (-1; 1].
Враховуючи заміну, отримаємо -1 < lg x 1.
Тоді отже, х (0,1; 10] (рис. 173).
Відповідь: (0,1; 10].
III. Формування умінь розв’язувати логарифмічні нерівності
Виконання вправ № 59 (10), 60 (15).
IV. Сприймання і усвідомлення розв’язування логарифмічних (комбінованих) нерівностей методом інтервалів
Приклад 1. Розв’яжіть нерівність (3х – 6)log0,5 x > 0.
Розв’язання
Нехай у = (3х – 6) log0,5 x, у > 0.
Область визначення функції у: х > 0.
Знайдемо нулі функції: (3х – 6) – log0,5 x = 0;
3х – 6 = 0, log0,5 х = 0;
Х = 2, х = 1.
Розіб’ємо область визначення функції на проміжки точками 2 і 1 і знайдемо знаки функції на утворених проміжках (рис. 174). Отже, х (1; 2).
Відповідь: (1; 2).
Приклад 2. Розв’яжіть нерівність log x-3(х – 1) < 2.
Розв’язання
Нехай у = log x-3(х – 1) – 2 і у < 0. Область визначення функції знаходимо із системи: х (3; 4) (4; +).
Знайдемо нулі функції: log x-3(х – 1) = 2; х – 1 = (х – 3)2; х – 1 = х2 – 6х + 9; х2 – 7х + 10 = 0; х = 5, х = 2. х = 2 – не входить в область визначення функції. Перевіркою переконуємося, що х = 5 – нуль функції.
Розіб’ємо область визначення функції на проміжки точкою 5 та знайдемо знаки функції на утворених проміжках (рис. 175).
Отже, х (3; 4) (5; +).
Відповідь: (3; 4) (5; +).
V. Формування умінь розв’язувати логарифмічні нерівності
Виконання вправ № 59 (8), 60 (12).
VI. Сприймання і усвідомлення графічного способу розв’язування логарифмічних нерівностей
Приклад. Розв’яжіть нерівність log3 x < 4 – х графічно.
Розв’язання
Побудуємо графіки функцій у = log3 x і у = 4 – х в одній системі координат. Графіки перетинаються в точці А з абсцисою х = 3 (рис. 176).
Із рисунка видно, що множина розв’язків нерівності log3 x < 4 – х є проміжок (0; 3].
Відповідь: (0; 3].
VII. Підведення підсумків уроку
VIII. Домашнє завдання
Підготуватися до тематичної контрольної роботи. Вправи № 59 (7; 9), 60 (11).
Related posts:
- Розв’язування логарифмічних рівнянь УРОК 58 Тема. Розв’язування логарифмічних рівнянь Мета уроку. формування умінь учнів розв’язувати логарифмічні рівняння різними методами: зведення логарифмічного рівняння до алгебраїчного; метод потенціювання; зведення логарифмів до однієї і тієї самої основи; метод логарифмування та графічний метод. І. Перевірка домашнього завдання 1. Усне розв’язування логарифмічних рівнянь з використанням таблиці 24 для усних обчислень “Логарифмічні рівняння”. 1 […]...
- Розв’язування нерівностей, що містять показникову функцію УРОК 49 Тема. Розв’язування нерівностей, що містять показникову функцію Мета уроку. Познайомити учнів зі способами розв’язування показникових нерівностей. І. Перевірка домашнього завдання Відповіді на запитання, що виникли в учнів під час виконання домашніх завдань. II. Аналіз самостійної роботи, проведеної на попередньому уроці ІІІ. Сприймання і усвідомлення розв’язування найпростіших показникових нерівностей та тих, що безпосередньо зводяться […]...
- Розв’язування ірраціональних нерівностей УРОК 39 Тема. Розв’язування ірраціональних нерівностей Мета уроку. Познайомити учнів з узагальненим методом інтервалів. Формування умінь розв’язувати ірраціональні нерівності. І. Перевірка домашнього завдання 1. Перевірити розв’язування вправ № 71 (3), 67 (1), 79 (1) за розв’язаннями на дошці, заготовленими до уроку. 2. Самостійна робота Розв’яжіть рівняння: А) = . (4 бали) Б) – = 2. […]...
- Системи нерівностей з однією змінною Математика – Алгебра Нерівності Системи нерівностей з однією змінною Розв’язком системи нерівностей з однією змінною називають значення змінної, яке є розв’язком кожної нерівності даної системи. Розв’язати систему нерівностей означає знайти всі її розв’язки або показати, що їх немає. Щоб розв’язати систему нерівностей, кожну її нерівність поступово спрощують, замінюючи рівносильною. Розглянемо на простих прикладах, як застосувати […]...
- Нерівності з однією змінною УРОК № 63 Тема. Нерівності з однією змінною Тестові завдання 1. Дано нерівності: 1) -2х2 + х + 6 < 0; 2) 2х2 + х + 7 ? 0; 3) х2 > 0; 4) -3х2 – х – 6 < 0. 2. Яка з даних нерівностей виконується при будь-яких значеннях x? а) усі; б) 2; […]...
- Розв’язування показникових нерівностей УРОК 50 Тема. Розв’язування показникових нерівностей Мета уроку. Формування умінь учнів розв’язувати показникові нерівності. І. Перевірка домашнього завдання 1. Відповіді на запитання, що виникли в учнів при виконанні домашніх завдань. 2. Усне розв’язування показникових нерівностей з використанням таблиці 21 для усних обчислень “Показникові нерівності “. 1 2 3 4 5 1 2х > 8 2х […]...
- Розв’язування тригонометричних нерівностей УРОК 30 Тема. Розв’язування тригонометричних нерівностей Мета уроку: формування умінь учнів розв’язувати тригонометричні нерівності. І. Перевірка домашнього завдання. 1. Відповіді на запитання, які виникли у учнів при виконанні домашнього завдання. 2. Фронтальна бесіда з учнями з використанням рис. 135. 1) Які дуги відповідають нерівностям: Tg t > a, tg t < a, tg t > […]...
- Розв’язування систем логарифмічних рівнянь УРОК 59 Тема. Розв’язування систем логарифмічних рівнянь Мета уроку. Формування умінь учнів розв’язувати системи логарифмічних рівнянь. І. Перевірка домашнього завдання Проводиться колективне обговорення виконання домашніх вправ за записами розв’язання вправ № 52 (9; 11), 53 (12), 54 (2; 7), підготовленими до початку уроку. II. Самостійна робота Варіант 1 Розв’яжіть рівняння: А) lg(x2 – 2х) = […]...
- Розв’язування найпростіших тригонометричних нерівностей УРОК 29 Тема. Розв’язування найпростіших тригонометричних нерівностей Мета уроку: формування умінь учнів розв’язувати найпростіші тригонометричні нерівності: tg t > a, tgt < a, ctg t < a, ctg t > a (tgt a, tgt a, ctg t a, ctg t a). І. Перевірка домашнього завдання 1. Відповіді на запитання, які виникли в учнів у процесі […]...
- Розв’язування логарифмічних рівнянь Математика – Алгебра Логарифмічна функція Розв’язування логарифмічних рівнянь Логарифмічними рівняннями називають такі рівняння, які містять змінну під знаком логарифма. Найпростішим логарифмічним рівнянням є , де , . Корінь цього рівняння дорівнює . Рівняння , де , , рівносильне системі: Зверніть увагу: у цій системі можна випустити одну з нерівностей. Із цього випливає, що для розв’язання […]...
- Квадратна нерівність. Розв’язування квадратних нерівностей УРОК № 25 Тема. Квадратна нерівність. Розв’язування квадратних нерівностей Мета уроку: закріпити знання учнів про зміст означення квадратних нерівностей та схему їх розв’язування; удосконалити вміння учнів розв’язувати квадратні нерівності та нерівності, що зводяться до квадратних шляхом рівносильних перетворень, а також виробити вміння використовувати ці вміння під час розв’язування систем квадратних нерівностей та для розв’язування задач […]...
- Властивості числових нерівностей Математика – Алгебра Нерівності Властивості числових нерівностей a, b, с, d – довільні числа. 1. Якщо і , то . 2. Якщо до обох частин правильної нерівності додати одне й те саме число, то дістанемо правильну нерівність. 3. Якщо обидві частини правильної нерівності помножити на одне й те саме додатне число, то дістанемо правильну нерівність. […]...
- Розв’язування нерівностей з однією змінною Математика – Алгебра Нерівності Розв’язування нерівностей з однією змінною Розв’язком нерівності з однією змінною називається значення цієї змінної, яке перетворює її на правильну числову нерівність. Розв’язати нерівність означає знайти всі її розв’язки або довести, що їх немає. Дві нерівності називають Рівносильними, якщо вони мають одні й ті самі розв’язки або не мають розв’язків. Числові проміжки […]...
- Розв’язування показникових рівнянь, систем і нерівностей УРОК 51 Тема. Розв’язування показникових рівнянь, систем і нерівностей Мета уроку. Формування умінь розв’язувати показникові рівняння, системи і нерівності. І. Перевірка домашнього завдання 1. Три учні відтворюють розв’язування вправи № 2 (11; 13; 16). 2. Колективне розв’язування нерівностей, аналогічних домашнім: вправи № 2 (30; 31). II. Аналіз самостійної роботи, проведеної на попередньому уроці III. Формування […]...
- Числові нерівності. Доведення числових нерівностей УРОК № 2 Тема. Числові нерівності. Доведення числових нерівностей Мета уроку: домогтися засвоєння учнями змісту: додаткових нерівностей для суми взаємно обернених додатних чисел та середнього арифметичного двох невід’ємних чисел (у порівнянні з їх середнім геометричним) та доведення цих нерівностей; способу застосування доведених нерівностей при доведенні інших числових нерівностей. Продовжити роботу з вироблення вмінь: відтворювати зміст […]...
- Розв’язування тригонометричних рівнянь, систем та нерівностей УРОК 31 Тема. Розв’язування тригонометричних рівнянь, систем та нерівностей Мета уроку. Систематизувати навички і уміння розв’язувати тригонометричні рівняння, нерівності, системи. І. Перевірка домашнього завдання 1. Три учні відтворюють розв’язування нерівностей із домашнього завдання. 2. Колективне розв’язування нерівностей: A) sin 2x sin x – cos 2x cos х . Sin 2x sin x – cos 2x […]...
- Основні властивості числових нерівностей УРОК № 4 Тема. Основні властивості числових нерівностей Мета уроку: домогтися засвоєння учнями змісту поняття “оцінити значення виразу”; закріпити знання учнів про зміст властивостей числових нерівностей та їхніх наслідків. Продовжити роботу з вироблення вмінь: відтворювати зміст вивчених властивостей, наслідків із них і їх доведення; застосовувати властивості числових нерівностей та наслідки з них для розв’язування вправ […]...
- Лінійні нерівності та їхні системи УРОК № 61 Тема. Лінійні нерівності та їхні системи Тестове завдання 1. Знайдіть переріз проміжків (-6; 7] і (-4; 25]. А) [7; 25); б) [-4; 7); в) (-6; 25]; г) (-4; 7]. 2. Розв’яжіть нерівність . A) k < 1,125; б) k? ; в) k? 1,125; г) немає розв’язків. 3. При яких х має зміст […]...
- Почленне додавання і множення нерівностей. Застосування властивостей числових нерівностей для оцінювання значення виразу УРОК № 6 Тема. Почленне додавання і множення нерівностей. Застосування властивостей числових нерівностей для оцінювання значення виразу Мета уроку: закріплення учнями змісту: властивостей числових нерівностей і теорем про почленне додавання та множення нерівностей; наслідків із властивостей числових нерівностей. Відпрацювання навичок: відтворювати зміст вивчених понять; застосовувати їх для розв’язування вправ: на порівняння виразів, на доведення нерівностей, […]...
- Розв’язування систем (та сукупностей) лінійних нерівностей з однією змінною УРОК № 14 Тема. Розв’язування систем (та сукупностей) лінійних нерівностей з однією змінною Мета уроку: закріплення учнями знань змісту понять: нерівність з однією змінною, розв’язок нерівності з однією змінною та що означає розв’язати нерівність з однією змінною; система нерівностей з однією змінною, розв’язок системи нерівностей з однією змінною та що означає розв’язати систему нерівностей з […]...
- Нерівність з однією змінною. Система та сукупність нерівностей з однією змінною УРОК № 9 Тема. Нерівність з однією змінною. Система та сукупність нерівностей з однією змінною Мета уроку: засвоєння учнями змісту понять: нерівність з однією змінною, розв’язок нерівності з однією змінною та що означає розв’язати нерівність з однією змінною; система нерівностей з однією змінною, розв’язок системи нерівностей з однією змінною та що означає розв’язати систему нерівностей […]...
- Підсумковий урок з теми “Функції. Властивості функції. Функція у = ах2+bx+c. Розв’язування квадратних нерівностей” УРОК № 26 Тема. Підсумковий урок з теми “Функції. Властивості функції. Функція у = ах 2 + b х + С. Розв’язування квадратних нерівностей” Мета уроку: повторити, систематизувати й узагальнити знання та вміння учнів щодо змісту вивчених у розділі “Функція та її властивості” понять і схем розв’язування типових задач шляхом складання загальних алгоритмів розв’язування задач. […]...
- Числові та лінійні нерівності УРОК № 60 Тема. Числові та лінійні нерівності Тестові завдання 1. Яку подвійну нерівність задовольняє множина чисел, поданих на рисунку? А) -4 < x < 8; Б) -4 < х < 8; В) -4 < х < 8; Г) -4 < х < 8. 2. Відомо, що х < у. Яка з наведених нерівностей є […]...
- Аналіз підсумкової контрольної роботи. Розв’язування цікавих задач УРОКИ № 68, 69 Тема. Аналіз підсумкової контрольної роботи. Розв’язування цікавих задач Задачі підвищеної складності 1. При яких значеннях а рівняння не має дійсних коренів? 1) х2 + 4х – а = 0; 2) (а – 1)х2 + (2а – 3)х + а = 0; 3) (а – 2)х2 – 2(а – 3)х + а […]...
- Метод інтервалів Математика – Алгебра Границя Метод інтервалів Отже, нехай функція неперервна на інтервалі І й перетворюється на 0 у скінченній кількості точок цього інтервалу. Тоді інтервал І розбивається цими точками на інтервали, в кожному з яких зберігає незмінний знак. Щоб визначити цей знак, достатньо обчислити значення у будь-якій точці кожного такого інтервалу. Приклад Розв’язати нерівність Розглянемо […]...
- Задачі на пропорційне ділення. Розв’язування рівнянь і нерівностей (№№ 849-857) Тема. Задачі на пропорційне ділення. Розв’язування рівнянь і нерівностей (№№ 849-857). Мета. Закріплювати вміння учнів розв’язувати задачі на пропорційне ділення; вчити складати задачі на пропорційне ділення за коротким записом; удосконалювати вміння розв’язувати рівняння і нерівності. Обладнання. Таблиця усних обчислень; картки для опитування; схеми задач. Зміст уроку І. Контроль, корекція і закріплення знань. 1. Перевірка домашнього […]...
- Розв’язування найпростіших тригонометричних нерівностей Математика – Алгебра Тригонометричні функції Розв’язування найпростіших тригонометричних нерівностей Найзручнішим є спосіб розв’язування тригонометричних нерівностей за допомогою тригонометричного кола. Приклади 1) . Побудуємо одиничне коло (див. рисунок нижче). Проведемо пряму . Вона перетинає коло у двох точках. Одна з них відповідає куту або , друга – куту або . Ці дві точки розбивають коло на […]...
- Логарифмічні нерівності Математика – Алгебра Логарифмічна функція Логарифмічні нерівності Розв’язуючи логарифмічні нерівності, спираються на такі твердження. 1. Якщо , то нерівність рівносильна подвійній нерівності . Це твердження можна записати у вигляді: або 2. Якщо , то нерівність рівносильна подвійній нерівності . Це твердження можна записати у вигляді: або Зверніть увагу: при розв’язуванні логарифмічної нерівності немає сенсу окремо […]...
- Знаходження значень виразів на сумісні дії з багатоцифровими числами. Розширені задачі на зведення до одиниці. Складання і розв’язування нерівностей (№№ 1067-1075) Тема. Знаходження значень виразів на сумісні дії з багатоцифровими числами. Розширені задачі на зведення до одиниці. Складання і розв’язування нерівностей (№№ 1067 – 1075). Мета. Виправляти учнів у знаходженні значень виразів на сумісні дії з багатоцифровими числами; удосконалювати вміння розв’язувати задачі на зведення до одиниці; вчити складати і розв’язувати нерівності. Обладнання. Завдання для опитування учнів; […]...
- ОБЧИСЛЕННЯ ЗНАЧЕНЬ ВИРАЗІВ. ДОПОВНЕННЯ РІВНОСТЕЙ І НЕРІВНОСТЕЙ. СКЛАДАННЯ І РОЗВ’ЯЗУВАННЯ ЗАДАЧ ЗА МАЛЮНКАМИ ТАБЛИЧНЕ ДОДАВАННЯ І ВІДНІМАННЯ ЧИСЕЛ У МЕЖАХ 10 Урок 53. ОБЧИСЛЕННЯ ЗНАЧЕНЬ ВИРАЗІВ. ДОПОВНЕННЯ РІВНОСТЕЙ І НЕРІВНОСТЕЙ. СКЛАДАННЯ І РОЗВ’ЯЗУВАННЯ ЗАДАЧ ЗА МАЛЮНКАМИ Мета: закріплювати знання таблиць додавання і віднімання числа 2; вчити учнів доповнювати рівності і нерівності; вправляти у складанні і розв’язуванні задач за малюнками; вдосконалювати обчислювальні навички; виховувати старанність. Хід уроку I. ОРГАНІЗАЦІЙНИЙ […]...
- Огляд властивостей основних функцій УРОК 2 Тема. Огляд властивостей основних функцій Мета уроку: Повторення і узагальнення властивостей елементарних функцій: у = kx + b, у = , у = х2, у= х3, у = , у = , у = ?х2 + bx + с. І. Перевірка домашнього завдання 1. Один учень пояснює розв’язання вправи № 1 (5), другий […]...
- Обернені тригонометричні функції: у = arcsin х, у = arccos х УРОК 18 Тема. Обернені тригонометричні функції: у = arcsin х, у = arccos х Мета уроку: вивчення властивостей обернених тригонометричних функцій: у = arcsin х, у = arccos х. І. Перевірка домашнього завдання Математичний диктант. Закінчіть математичні твердження: 1. Функція, яка набуває кожного свого значення в єдиній точці області визначення називається… 2. Оберненою до функцій […]...
- Зображення нерівностей земної поверхні на плані та карті Географія Загальна географія Земля на плані та карті Зображення нерівностей земної поверхні на плані та карті Усі нерівності земної поверхні називають Рельєфом. Щоб зобразити його на плані чи карті, необхідно виміряти висоту окремих ділянок земної поверхні. Для цього використовують нівелір. За його допомогою визначають, на скільки метрів вершина горба вища за його підошву. Цей процес […]...
- СКЛАДАННЯ І РОЗВ’ЯЗУВАННЯ ЗАДАЧ ЗА МАЛЮНКОМ І СХЕМОЮ. ДОПОВНЕННЯ РІВНОСТЕЙ І НЕРІВНОСТЕЙ. РОЗПІЗНАВАННЯ ГЕОМЕТРИЧНИХ ФІГУР ТАБЛИЧНЕ ДОДАВАННЯ І ВІДНІМАННЯ ЧИСЕЛ У МЕЖАХ 10 Урок 55. СКЛАДАННЯ І РОЗВ’ЯЗУВАННЯ ЗАДАЧ ЗА МАЛЮНКОМ І СХЕМОЮ. ДОПОВНЕННЯ РІВНОСТЕЙ І НЕРІВНОСТЕЙ. РОЗПІЗНАВАННЯ ГЕОМЕТРИЧНИХ ФІГУР Мета: навчати учнів складати і розв’язувати задачі на збільшення і зменшення числа на кілька одиниць за малюнком і схемою; закріплювати вміння доповнювати рівності і нерівності, розпізнавати геометричні фігури; вдосконалювати обчислювальні […]...
- Функції та їхні властивості. Квадратична функція УРОК № 62 Тема. Функції та їхні властивості. Квадратична функція Тестові завдання 1. Знайдіть область визначення функції . А) х 5; Б) х -5; В) х -5, х 0; Г) х 3, х -5, х 0. 2. Знайдіть нулі функції . А) 0; 2; б) 2; в) 0; -2; г) нулів немає. 3. Яка з […]...
- САНТИМЕТР. ВИМІРЮВАННЯ ДОВЖИНИ ВІДРІЗКІВ. ОБЧИСЛЕННЯ ЗНАЧЕНЬ ВИРАЗІВ. ДОПОВНЕННЯ РІВНОСТЕЙ І НЕРІВНОСТЕЙ ОЗНАКИ І ВЛАСТИВОСТІ ПРЕДМЕТІВ. МНОЖИНИ. ГЕОМЕТРИЧНІ ФІГУРИ. НАТУРАЛЬНІ ЧИСЛА 1-10 І ЧИСЛО 0 Урок 38. САНТИМЕТР. ВИМІРЮВАННЯ ДОВЖИНИ ВІДРІЗКІВ. ОБЧИСЛЕННЯ ЗНАЧЕНЬ ВИРАЗІВ. ДОПОВНЕННЯ РІВНОСТЕЙ І НЕРІВНОСТЕЙ Мета: ознайомити учнів з одиницею вимірювання сантиметром та сантиметровою лінійкою; учити вимірювати довжину відрізка, доповнювати рівності і нерівності; закріплювати знання з нумерації чисел у межах 10; розвивати мислення; виховувати […]...
- Завдання для перевірки знань до §§ 19-21 1. 1) у = х2 + х; 3) – функції. 2. 1) у = 3х – 7; 3) у = 4 – лінійні функції. 3. 1) у = -2х + 6; k = -2; l = 6; 2) у = 7,4x; k = 7,4; l = 0. 4. у = -2х + 7; 1) х […]...
- Схема дослідження – ФУНКЦІЇ ТА ЇХНІ ВЛАСТИВОСТІ Формули й таблиці МАТЕМАТИКА ФУНКЦІЇ ТА ЇХНІ ВЛАСТИВОСТІ Функцією (або функціональною залежністю) називається закон, за яким кожному значенню незалежної змінної х з деякої множини чисел, що називається областю визначення функції, ставиться у відповідність тільки одне певне значення величини у. Графіком функції називається множина всіх точок координатної площини з координатами (х, у), такими, при яких абсциса […]...
- Застосування властивостей показникової функції до розв’язування вправ УРОК 44 Тема. Застосування властивостей показникової функції до розв’язування вправ Мета уроку. Формування умінь учнів застосовувати властивості показникової функції до розв’язування вправ. Познайомити учнів з використанням показникової функції під час вивчення явищ навколишнього середовища. І. Перевірка домашнього завдання Колективне обговорення № 1-12 із “Запитання і завдання для повторення” § 1 розділу IV. II. Набуття умінь […]...
- ПОРІВНЯННЯ ПРЕДМЕТІВ ЗА РІЗНИМИ ОЗНАКАМИ. “СУСІДИ” ЧИСЛА. ФОРМУЛЮВАННЯ СУДЖЕНЬ “ЯКЩО…, ТО…”. ЗАПИСУВАННЯ НЕРІВНОСТЕЙ ОЗНАКИ І ВЛАСТИВОСТІ ПРЕДМЕТІВ. МНОЖИНИ. ГЕОМЕТРИЧНІ ФІГУРИ. НАТУРАЛЬНІ ЧИСЛА 1-10 І ЧИСЛО 0 Урок 16. ПОРІВНЯННЯ ПРЕДМЕТІВ ЗА РІЗНИМИ ОЗНАКАМИ. “СУСІДИ” ЧИСЛА. ФОРМУЛЮВАННЯ СУДЖЕНЬ “ЯКЩО…, ТО…”. ЗАПИСУВАННЯ НЕРІВНОСТЕЙ Мета: ознайомити учнів з поняттям “сусіди” числа; вчити порівнювати предмети за різними ознаками, складати судження “якщо…, то…”, записувати нерівності; розвивати мовлення; виховувати інтерес до предмета. Хід уроку […]...